It is held that more than 4.5 billion years ago, the surface of the Moon was a liquid magma ocean. Scientists think that one component of lunar rocks, called KREEP (potassium, rare earth elements, and phosphorus), represents the last chemical remnant of that magma ocean. KREEP is actually a composite of what scientists term incompatible elements: those that cannot fit into a crystal structure and thus were concentrated in the remaining magma. For the researchers, KREEP is a convenient tracer, useful for reporting the story of the volcanic history of the lunar crust and chronicling the frequency of impacts by comets and other celestial bodies.
The lunar crust is composed of a variety of major elements, such as oxygen, silicon, magnesium, iron, calcium, aluminium, but also contains important quantities of secondary elements, including titanium, uranium, thorium, potassium, and hydrogen. The Moon has a mean density of 3,346.2 kg/m³, making it the second densest moon in the solar system, after Io.
A complete global mapping of the Moon for the abundance of major and minor elements has not yet been performed. However, some spacecraft have done so for portions of the Moon, or for certain elements. In particular, a gamma-ray spectrometer onboard the spacecraft Lunar Prospector has determined near-global abundances of iron, calcium, aluminum, magnesium, titanium, potasium, thorium, uranium, and hydrogen. The Clementine spacecraft has obtained near-global abundances for iron and titanium, but at a much higher spatial resolution.
2006-11-04 05:22:19
·
answer #1
·
answered by Anonymous
·
9⤊
2⤋
Composition
It is held that more than 4.5 billion years ago, the surface of the Moon was a liquid magma ocean. Scientists think that one component of lunar rocks, called KREEP (potassium, rare earth elements, and phosphorus), represents the last chemical remnant of that magma ocean. KREEP is actually a composite of what scientists term incompatible elements: those that cannot fit into a crystal structure and thus were concentrated in the remaining magma. For the researchers, KREEP is a convenient tracer, useful for reporting the story of the volcanic history of the lunar crust and chronicling the frequency of impacts by comets and other celestial bodies.
The lunar crust is composed of a variety of major elements, such as oxygen, silicon, magnesium, iron, calcium, aluminium, but also contains important quantities of secondary elements, including titanium, uranium, thorium, potassium, and hydrogen. The Moon has a mean density of 3,346.2 kg/m³, making it the second densest moon in the solar system, after Io.
A complete global mapping of the Moon for the abundance of major and minor elements has not yet been performed. However, some spacecraft have done so for portions of the Moon, or for certain elements. In particular, a gamma-ray spectrometer onboard the spacecraft Lunar Prospector has determined near-global abundances of iron, calcium, aluminum, magnesium, titanium, potasium, thorium, uranium, and hydrogen. The Clementine spacecraft has obtained near-global abundances for iron and titanium, but at a much higher spatial resolution.
Landscape
When observed with Earth based telescopes, the Moon can be seen to have some 30,000 craters having a diameter of at least 1 km, but close up observation from lunar orbit reveals a multitude of ever smaller craters. Most are hundreds of millions or billions of years old, and the lack of an atmosphere, weather and recent geological processes ensures that many of them have remained relatively well preserved in comparison to their terrestrial counterparts. In the lunar terrae, it is indeed impossible to add a crater of any size without obliterating another. The largest crater on the Moon, and indeed the largest known crater within the solar system, is the South Pole-Aitken basin. This crater is located on the far side, between the South Pole and equator, and is some 2,240 kilometres in diameter, and 13 kilometres in depth.[6]
The dark and relatively featureless lunar plains are called maria, Latin for seas, since they were believed by ancient astronomers to be water-filled seas. They are actually vast ancient basaltic lava flows, many of which filled the topographic depressions associated with large impact basins (Oceanus Procellarum is a major exception in that it does not correspond to any known impact basin). The lighter-colored highlands are called terrae. Maria are found almost exclusively on the lunar nearside, with the lunar far side having only a few scattered patches.
Blanketed atop the Moon's crust is a highly comminuted and "impact gardened" surficial layer called regolith. Both the crust and regolith are unevenly distributed over the Moon. The crust is on average about 50 km thick (though this is uncertain by about ±15 km), and it is widely believed that the far-side crust is on average thicker than the near side by about 15 km. [7]. The regolith varies from 3 to 5 metres (10 to 16 ft) deep in the maria to 10 to 20 metres (33 to 66 ft) deep in the highlands.
Using images taken by the Clementine mission, it appears that four mountainous regions on the rim of the 73 km-wide Peary crater at the Moon's north pole remain illuminated for the entire lunar day. These unnamed mountains of eternal light are possible due to the Moon's extremely small axial tilt, which also gives rise to permanent shadow at the bottoms of many polar craters. No similar regions of eternal light exist at the less mountainous south pole, although the rim of Shackleton crater is illuminated for 80% of the lunar day. Clementine's images were taken during the northern lunar hemisphere's summer season, and it remains unknown whether these four mountains are shaded at any point during their local winter season.
Presence of water
Over time, comets and meteoroids continuously bombard the Moon. Many of these objects are water-rich. Energy from sunlight splits much of this water into its constituent elements hydrogen and oxygen, both of which usually fly off into space immediately. However, it has been hypothesized that significant traces of water remain on the Moon, either on the surface, or embedded within the crust. The results of the Clementine mission suggested that small, frozen pockets of water ice (remnants of water-rich comet impacts) may be embedded unmelted in the permanently shadowed regions of the lunar crust. Although the pockets are thought to be small, the overall amount of water was suggested to be quite significant — 1 km³.
Some water molecules, however, may have literally hopped along the surface and become trapped inside craters at the lunar poles. Due to the very slight "tilt" of the Moon's axis, only 1.5°, some of these deep craters never receive any light from the Sun — they are permanently shadowed. Clementine has mapped[8] craters at the lunar south pole[9] which are shadowed in this way. It is in such craters that scientists expected to find frozen water. Water ice can be mined and then split into hydrogen and oxygen by solar panel-equipped electric power stations or a nuclear generator. The presence of usable quantities of water on the Moon is an important factor in rendering lunar habitation cost-effective, since transporting water (or hydrogen and oxygen) from Earth would be prohibitively expensive.
The equatorial Moon rock collected by Apollo astronauts contained no traces of water. In the permanently shadowed regions, however, Lunar Prospector results indicate the presence of hydrogen due to its neutron signature. This corroborated radar reflections from the Clementine probe, leading some to postulate that the hydrogen was in the form of water ice (http://lunar.arc.nasa.gov/results/ice/eureka.htm). Recent radar observations with the Arecibo planetary radar showed that the Clementine radar returns were from rocks ejected from young craters, rocks which did not follow permanently-shadowed crater floors. This indicates that the neutron results are primarily from hydrogen in forms other than ice, such as trapped hydrogen molecules or organics. However, the researchers do not exclude the possibility of minor ice sites.
Magnetic field
Compared to that of Earth, the Moon has only a very weak external magnetic field. Other major differences are that the Moon does not currently have a dipolar magnetic field (as would be generated by a geodynamo in its core), and the magnetizations that are present are almost entirely crustal in orgin. One hypothesis holds that the crustal magnetizations were acquired early in lunar history when a geodynamo was still operating. The small size of the lunar core, however, is a potential obstacle to this theory. Alternatively, it is possible that on airless bodies such as the Moon, transient magnetic fields could be generated during impact processes. In support of this, it has been noted that the largest crustal magnetizations appear to be located near the antipodes of the largest impact basins.
Atmosphere
The Moon has a relatively insignificant and tenuous atmosphere. One source of this atmosphere is outgassing — the release of gases, for instance radon, which originate deep within the Moon's interior. Another important source of gases is the solar wind, which is briefly captured by the Moon's gravity.
You could get more information from the link below...
2006-11-05 05:12:40
·
answer #10
·
answered by catzpaw 6
·
0⤊
0⤋