The function is of the form d(u/v) which is given by
(v du - u dv) / v^2.
here u=(1+x)^2, hence du=2(1+x)
here v=1-x, hence dv=-1.
substitute these values in the formula and simplify to get final result.
KSR
2006-11-03 23:40:03
·
answer #1
·
answered by Anonymous
·
0⤊
0⤋
do u want it be solved by first principle?
let dx = delta x, small change in x
then first find f(x+dx)
f(x +dx) = (1 + x + dx)^2/(1 - x -dx)
Now (1+x + dx)^2 = (1+x)^2 + 2(1+x)dx +(dx)^2
and therefore
f(x+dx) = [(1+x)^2 +2(1+x)dx +(dx)^2]/(1-x-dx)
first derivative is given by Limit (dx-->0)[ f(x+dx)-f(x)]/dx
calculate f(x+dx)-f(x)
= {(1+x)^2 +2(1+x).dx +(dx)^2]/(1-x-dx)} - {(1+x)^2 / (1 - x)}
= [1/(1-x)].{ [ {(1+x)^2 +2(1+x)dx +(dx)^2} / {1-(dx/(1-x)} ] - [(1+x)^2] }
=[1/(1-x)].{ [ (1+x)^2 +2(1+x)dx +(dx)^2 ] - [(1+x)^2].[1-(dx/((1-x))]}
=[1/(1-x)]. { (1+x)^2 +2(1+x)dx +(dx)^2 - (1+x)^2+ (dx(1+x)^2/((1-x)) }
==[1/(1-x)]. { +2(1+x)dx +(dx)^2 + (dx(1+x)^2/((1-x)) }
now divide by dx
so (f(x+dx)-f(x))/dx=[1/(1-x)]. { +2(1+x) +(dx) + ((1+x)^2/((1-x)) }
in the limit dx-->0
this becomes df(x)/dx or f'(x) =[1/(1-x)]. { +2(1+x) + ((1+x)^2/((1-x)) }
hence the first derivTIVE OBTAINED
2006-11-04 08:18:43
·
answer #2
·
answered by anami 3
·
0⤊
0⤋
i'm assuming: (1+x)^2/(1-x)
then:
( 2(x+1)(1-x)-(-1)(1+x)^2)/(1-x)^2=
(x+1)(3-x)/(1-x)^2
easy and simple as it can get
2006-11-04 07:49:09
·
answer #3
·
answered by Little Fairy 4
·
0⤊
0⤋
f(x) = g(x)/h(x) so
f'(x) = (g'(x)h(x) - h'(x)g(x))/(h(x))²
f(x) = (g(x))^n so
f'(x) = (g(x))^(n-1) * g'(x)
f(x) = g(x) + h(x) so
f'(x) = g'(x) + h'(x)
Now get off yer dead αss and go do your homework âº
Doug
2006-11-04 07:41:32
·
answer #4
·
answered by doug_donaghue 7
·
0⤊
0⤋
f'(x)=(1-x)*2(1+x)-(1+x)^2(-1)/(1-x)^2
2(1-x^2)+(1+x)^2/(1-x)^2
=2-2x^2+1+x^2+2x/(1-x)^2
=-(x^2-2x-3)/(1-x)^2
=-(x-3)(x+1)/(1-x)^2
2006-11-04 07:45:35
·
answer #5
·
answered by raj 7
·
0⤊
0⤋