English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Just remember the squared exponent is around the whole function, not just on the t.

2006-11-03 06:01:15 · 2 answers · asked by umphrey610 1 in Science & Mathematics Mathematics

2 answers

Let u=ln t, e^u=t, du=dt/t, dt=t du
Then:
∫ln² t dt = ∫t u² du = ∫u² e^u du
Integrating by parts:
u² e^u - ∫2u e^u du
u² e^u - 2u e^u + ∫2e^u du
u² e^u - 2u e^u + 2e^u + C
t ln² t - 2t ln t + 2t +C
And we are done.

2006-11-03 06:54:48 · answer #1 · answered by Pascal 7 · 1 0

We know that Integral ln(t) dt = t*ln(t) -t

In yiur integral, put u = ln(t) and dv = ln(t) dt. Then, by parts, Int (ln(t)) dt = uv - Integral vdu = ln(t)*[t*ln(t) -t ] - Integral ((t*ln(t)-t)/t) = ln(t)*[t*ln(t) -t ] - Integral (ln(t) -1) dt = ln(t)*[t*ln(t) -t ] - (t*ln(t) - t) - t +C. = ln(t)*[t*ln(t) -t ] - t*ln(t) + C = t*ln(t)^2 -2t*ln(t) + C.

To show that Integral ln(t) dt = t*ln(t) -t , integrate by parts putting u = ln(t) and dv = dx. Then, you get t*ln(t) - Integral t*(1/t) dt = t*ln(t) - t + c

Now, yiub can do some simplifications, f you want

2006-11-03 15:06:52 · answer #2 · answered by Steiner 7 · 0 0

fedest.com, questions and answers