This will explain what they are and how they occur. I have been to Yellowstone National Park and I have seen them. They are very impressive to watch.
www.uweb.ucsb.edu
What are geysers and why are they so rare?
A geyser is a hot spring that periodically erupts, throwing water into the air. Though that sounds simple, geysers are extremely rare. As of December 2005, the total of active geysers on earth number approximately 1000.
Conditions must be just right for geysers to occur. Three components must be present for geysers to exist: an abundant supply of water, an intense source of heat, and unique plumbing. Water is common in nature, heat can come from volcanic activity, but the plumbing is critical. For water to be thrown into the air, geyser plumbing must be water- and pressure-tight. Geyser scientists and observers have identified the volcanic rock rhyolite as being particularly effective at hosting geysers. Rhyolite is high in silica, which can deposit a water-tight seal along the walls of the geyser plumbing. Most of the geyser fields in the world are found in rhyolite or similar silica-laden rocks (like ignimbrite). The mixture of water, volcanic heat, and plumbing is exceptional at Yellowstone National Park. Over one-half of the world's geysers are located within the park's boundaries.
It is increasingly apparent that geysers must possess a fourth characteristic to exist: remoteness. Within the last fifty years, volcanic heat and abundant water have been increasingly harnessed to turn turbines for electricity production. Geothermal energy can be produced at any site where volcanic heat and water are readily available. Unfortunately, geyser fields are ideal for this type of energy production. Geothermal energy production steals the geysers' water, and destroys geyser activity (for example, Wairakei, New Zealand). A growing threat to geysers stems from mineral extraction. Hot groundwater may precipitate gold or other valuable minerals, and extraction may require removing the geyser plumbing itself. For example, in May 2003, mineral exploration at South America’s second largest geyser field (Puchuldiza, Chile), caused cessation in the field’s geysers. Few realize the actual rarity of geysers. As a result, many geyser fields have been destroyed and many others are being threatened.
How do geysers work?
The following is an excerpt from Scott Bryan's GEYSERS OF YELLOWSTONE, 3rd edition, copyright 2001. It is reproduced here for educational purposes. Scott Bryan's book not only describes each Yellowstone geyser in detail, but also includes descriptions of geyser fields worldwide. It is probably the best book on geysers out there. Buy it or check it out!
The hot water, circulating up from great depth, flows into the plumbing system of a geyser. Because this water is many degrees above the boiling point, some of it turns to steam instead of forming liquid pools. Meanwhile, additional, cooler water is flowing into the geyser from the porous rocks nearer the surface. The two waters mix as the plumbing system fills.
The steam bubbles formed at depth rise and meet the cooler water. At first, they condense there, but as they do they gradually heat the water. Eventually, these steam bubbles rising from deep within the plumbing system manage to heat the surface water until it also reaches the boiling point. Now the geyser begins to function like a pressure cooker. The water within the plumbing system is hotter than boiling, but "stable" because of the pressure exerted by all the water lying above it. (Remember that the boiling point of a liquid is dependent upon the pressure. The boiling point of pure water 212 degrees Farenheit (100 degrees Celsius) at sea level. In Yellowstone the elevation is about 7,500 feet, the pressure is lower, and the boiling point of water is only about 199 degrees Farenheit (93 degrees Celsius).
The filling and heating process continues until the geyser is full or nearly full of water. A very small geyser may take but a few seconds to fill whereas some of the larger geysers take several days. Once the plumbing system is full the geyser is about ready for an eruption. Often forgotten but of extreme importance is the heating that must occur along with the filling. Only if there is an adequate store of heat within the rocks lining the plumbing system can an eruption last for more than a few seconds. Again, each geyser is different from every other. Some are hot enough to erupt before they are completely full and do so without any preliminary indications of an eruption. Others may be completely full well before they are hot enough to erupt and so may overflow quietly for some time before an eruption occurs. But, eventually, the eruption will take place.
Because the water of the entire plumbing system has been heated to boiling, the rising steam bubbles no longer collapse near the surface. Instead, as more very hot water enters the geyser at great depth, even more and larger steam bubbles form and rise toward the surface. At first, they are able to make it all the way to the top of the plumbing system. But a time will come when there are so many steam bubbles that they can no longer simply float upwards. Somewhere they encounter some sort of constriction or bend in the plumbing. To get by they must squirt through the narrow spot. This forces some water ahead of them and up and out of the geyser. This initial loss of water reduces the pressure at depth, lowering the boiling point of water already hot enough to boil. More water boils, forming more steam. Soon there is a virtual explosion as the steam expands to over 1,500 times its original, liquid volume. The boiling rapidly becomes violent and water is ejected so rapidly that it is thrown into the air.
The eruption will continue until either the water is used up or the temperature drops below boiling. Once an eruption has ended. the entire process of filling, heating, and boiling will be repeated, leading to another eruption.
--------------------------------------------------------------------------------
In Depth
Where on the planet can geysers be found? (http://www.alanglennon.com/geysers/world.htm)
What's the tallest geyser? (http://www.wyojones.com/tall.htm)
Watch Old Faithful erupt on the National Park Service's Old Faithful Webcam (http://www.nps.gov/yell/oldfaithfulcam.htm)
Where can I find more information on geothermal energy? (http://solstice.crest.org/renewables/geothermal/grc/)
Can anything live in a geyser or boiling water? Find out from Thomas Brock (http://www.bact.wisc.edu/Bact303/b1)
Are there people who study and protect geysers? Visit the Geyser Observation and Study Association website. (http://www.geyserstudy.org)
Is Yellowstone going to blow up? Learn about supervolcanoes at the USGS website. (http://volcanoes.usgs.gov/yvo/2005/docudrama.html)
Explore El Tatio Geysers, Chile, using Google Earth.
2006-11-01 19:56:55
·
answer #1
·
answered by Just Bein' Me 6
·
1⤊
1⤋
Geysers are natural fountains that throw up jets of hot water and steam at regular intervals through a vent in the surface. In some areas, rainwater seeps through cracks in the rocks and drains into a crevice or a large cave-like chamber so deep that it reaches hot rocks. The heat of these rocks comes from the molten rocks below. Eventually, the intense heat boils the water, which then turns into steam. This increases the pressure inside the crevice as bubbles of steam build up. Finally, the pressure is strong enough to shoot the water and steam upwards and out through a vent, high into the air. When the jet has died down, the crevice fills with new water and the process repeats.
2006-11-02 05:10:37
·
answer #2
·
answered by bangaloresizzler 2
·
0⤊
0⤋
Geysers are natural fountains that throw up jets of hot water and steam at regular intervals through a vent in the surface. In some areas, rainwater seeps through cracks in the rocks and drains into a crevice or a large cave-like chamber so deep that it reaches hot rocks. The heat of these rocks comes from the molten rocks below. Eventually, the intense heat boils the water, which then turns into steam. This increases the pressure inside the crevice as bubbles of steam build up. Finally, the pressure is strong enough to shoot the water and steam upwards and out through a vent, high into the air. When the jet has died down, the crevice fills with new water and the process repeats.
2006-11-01 20:00:44
·
answer #3
·
answered by wales4u_14 2
·
1⤊
0⤋
A geyser is a type of hot spring that erupts periodically, ejecting a column of hot water and steam into the air. The name geyser comes from Geysir, the name of an erupting spring at Haukadalur, Iceland; that name, in turn, comes from the Icelandic verb gjósa, "to gush".
The formation of geysers requires a favourable hydrogeology which exists in only a few places on Earth, and so they are fairly rare phenomena. About 1,000 exist worldwide, with about half of these in Yellowstone National Park, U.S. (Glennon, J.A. 2005). Geyser eruptive activity may change or cease due to ongoing mineral deposition within the geyser plumbing, exchange of functions with nearby hot springs, earthquake influences, and human intervention (Bryan, T.S. 1995).
Erupting fountains of liquefied nitrogen have been observed on Neptune's moon Triton. These phenomena are also often referred to as geysers. On Triton, the geysers appear to be driven by solar heating instead of geothermal energy. The nitrogen, liquefied by a kind of greenhouse effect, may erupt to heights of 8 km.
2006-11-01 23:27:02
·
answer #4
·
answered by safrodin 3
·
0⤊
0⤋
A natural geyser is a type of hot spring that erupts periodically, ejecting a column of hot water and steam into the air. The name geyser comes from Geysir, the name of an erupting spring at Haukadalur, Iceland; that name, in turn, comes from the Icelandic verb gjósa, "to gush".
The formation of geysers requires a favourable hydrogeology which exists in only a few places on Earth, and so they are fairly rare phenomena. About 1,000 exist worldwide, with about half of these in Yellowstone National Park, U.S. (Glennon, J.A. 2005). Geyser eruptive activity may change or cease due to ongoing mineral deposition within the geyser plumbing, exchange of functions with nearby hot springs, earthquake influences, and human intervention (Bryan, T.S. 1995).
Erupting fountains of liquefied nitrogen have been observed on Neptune's moon Triton. These phenomena are also often referred to as geysers. On Triton, the geysers appear to be driven by solar heating instead of geothermal energy. The nitrogen, liquefied by a kind of greenhouse effect, may erupt to heights of 8 km.
There are two types of geyser: fountain geysers erupt from pools of water, typically in a series of intense, even violent, bursts; and cone geysers which erupt from cones or mounds of siliceous sinter (also known as geyserite), usually in steady jets that last anywhere from a few seconds to several minutes. Old Faithful, perhaps the best-known geyser at Yellowstone National Park, is an example of a cone geyser.
The intense transient forces inside erupting geysers are the main reason for their rarity. There are many volcanic areas in the world that have hot springs, mud pots and fumaroles, but very few with geysers. This is because in most places, even where other necessary conditions for geyser activity exist, the rock structure is loose, and eruptions will erode the channels and rapidly destroy any nascent geysers.
Most geysers form in places where there is volcanic rhyolite rock which dissolves in hot water and forms mineral deposits called siliceous sinter, or geyserite, along the inside of the plumbing systems. Over time these deposits cement the rock together tightly, strengthening the channel walls and enabling the geyser to persist.
Geysers are fragile phenomena and if conditions change, they can 'die'. Many geysers have been destroyed by people throwing litter and debris into them; others have ceased to erupt due to dewatering by geothermal power plants. The Great Geysir of Iceland has had periods of activity and dormancy. During its long dormant periods, eruptions were sometimes humanly-induced---often on special occasions---by the addition of surfactants to the water. Inducing eruptions at Geysir is no longer done, as the forced eruptions were damaging the geyser's special plumbing system. Following an earthquake in Iceland in 2000 the geyser became somewhat more active again. Initially the geyser erupted about eight times a day. As of July 2003, Geysir erupts several times a week.
for more pl. visit:
http://en.wikipedia.org/wiki/Geyser
2006-11-02 06:29:29
·
answer #5
·
answered by Anonymous
·
0⤊
0⤋
What Are Geysers
2016-09-28 07:09:58
·
answer #6
·
answered by darras 4
·
0⤊
0⤋
natural geysers r the one which boom out suddenly with hot water. now a days v cant find them as land is covered with concrete.in these water under land becomes heated and converts to vapour as land is covered these vapour cant escape and create internal pressure.when this pressure increases they boom out .
2015-07-14 06:33:28
·
answer #7
·
answered by cute 1
·
0⤊
0⤋
C. Geyser Well
2016-03-17 06:11:55
·
answer #8
·
answered by Anonymous
·
0⤊
0⤋
underground water spouting out with a massive heat and force, causing the water to shoot high up in the air
2006-11-01 21:46:27
·
answer #9
·
answered by icefiring123 3
·
1⤊
0⤋
A geyser is a type of hot spring that erupts periodically, ejecting a column of hot water and steam into the air. The name geyser comes from Geysir, the name of an erupting spring at Haukadalur, Iceland; that name, in turn, comes from the Icelandic verb gjósa, "to gush".
The formation of geysers requires a favourable hydrogeology which exists in only a few places on Earth, and so they are fairly rare phenomena. About 1,000 exist worldwide, with about half of these in Yellowstone National Park, U.S. (Glennon, J.A. 2005). Geyser eruptive activity may change or cease due to ongoing mineral deposition within the geyser plumbing, exchange of functions with nearby hot springs, earthquake influences, and human intervention (Bryan, T.S. 1995).
Erupting fountains of liquefied nitrogen have been observed on Neptune's moon Triton. These phenomena are also often referred to as geysers. On Triton, the geysers appear to be driven by solar heating instead of geothermal energy. The nitrogen, liquefied by a kind of greenhouse effect, may erupt to heights of 8 km.
Eruptions
Geyser activity, like all hot spring activity, is caused by surface water gradually seeping down through the ground until it meets rock heated by magma. The geothermally heated water then rises back toward the surface by convection through porous and fractured rock. Geysers differ from noneruptive hot springs in their subterranean structure; many consist of a small vent at the surface connected to one or more narrow tubes that lead to underground reservoirs of water.
Eruption of White Dome Geyser in YellowstoneAs the geyser fills, the water at the top of the column cools off, but because of the narrowness of the channel, convective cooling of the water in the reservoir is impossible. The cooler water above presses down on the hotter water beneath, not unlike the lid of a pressure cooker, allowing the water in the reservoir to become superheated, i.e. to remain liquid at temperatures well above the boiling point.
Ultimately, the temperatures near the bottom of the geyser rise to a point where boiling begins; steam bubbles rise to the top of the column. As they burst through the geyser's vent, some water overflows or splashes out, reducing the weight of the column and thus the pressure on the water underneath. With this release of pressure, the superheated water flashes into steam, boiling violently throughout the column. The resulting froth of expanding steam and hot water then sprays out of the geyser.
Eventually the water remaining in the geyser cools back to below the boiling point and the eruption ends; heated groundwater begins seeping back into the reservoir, and the whole cycle begins again. The duration of eruptions and time between successive eruptions vary greatly from geyser to geyser; Strokkur in Iceland erupts for a few seconds every few minutes, while Grand Geyser in the U.S. erupts for up to 10 minutes every 8-12 hours.
[edit] Types of geyser
Vixen Geyser in YellowstoneThere are two types of geyser: fountain geysers erupt from pools of water, typically in a series of intense, even violent, bursts; and cone geysers which erupt from cones or mounds of siliceous sinter (also known as geyserite), usually in steady jets that last anywhere from a few seconds to several minutes. Old Faithful, perhaps the best-known geyser at Yellowstone National Park, is an example of a cone geyser.
The intense transient forces inside erupting geysers are the main reason for their rarity. There are many volcanic areas in the world that have hot springs, mud pots and fumaroles, but very few with geysers. This is because in most places, even where other necessary conditions for geyser activity exist, the rock structure is loose, and eruptions will erode the channels and rapidly destroy any nascent geysers.
Most geysers form in places where there is volcanic rhyolite rock which dissolves in hot water and forms mineral deposits called siliceous sinter, or geyserite, along the inside of the plumbing systems. Over time these deposits cement the rock together tightly, strengthening the channel walls and enabling the geyser to persist.
Geysers are fragile phenomena and if conditions change, they can 'die'. Many geysers have been destroyed by people throwing litter and debris into them; others have ceased to erupt due to dewatering by geothermal power plants. The Great Geysir of Iceland has had periods of activity and dormancy. During its long dormant periods, eruptions were sometimes humanly-induced---often on special occasions---by the addition of surfactants to the water. Inducing eruptions at Geysir is no longer done, as the forced eruptions were damaging the geyser's special plumbing system. Following an earthquake in Iceland in 2000 the geyser became somewhat more active again. Initially the geyser erupted about eight times a day. As of July 2003, Geysir erupts several times a week.
Hyperthermophiles produce some of the bright colors of Grand Prismatic Spring, Yellowstone National ParkMain article: Thermophile, Hyperthermophile.
The specific colours of geysers derive from the fact that despite the apparently harsh conditions, life is often found in them (and also in other hot habitats) in the form of thermophilic prokaryotes. No known eukaryote can survive over 60 °C (140 °F).
In the 1960s, when the research of biology of geysers first appeared, scientists were generally convinced that no life can survive above around 73 °C (163 °F) - the upper limit for the survival of cyanobacteria, as the structure of key cellular proteins and deoxyribonucleic acid (DNA) would be destroyed. The optimal temperature for thermophilic bacteria was placed even lower, around 55 °C (131 °F).
However, the observations proved that it actually is possible for life to exist at high temperatures and that some bacteria prefer even temperatures higher than boiling point of water. Dozens of such bacteria are known nowadays. Thermophiles prefer temperatures from 50 to 70 °C whilst hyperthermophiles grow better at temperatures as high as 80 to 110 °C. As they have heat-stable enzymes that retain their activity even at high temperatures, they have been used as a source of thermostable tools, that are important in medicine and biotechnology, for example in manufacturing antibiotics, plastics, detergents (by the use of heat-stable enzymes lipases, pullulanases and proteases), and fermentation products (for example ethanol is produced). The fact that such bacteria exist also stretches our imagination about life on other celestial bodies, both inside and outside of solar system. Among these, the first discovered and the most important for biotechnology is Thermus aquaticus.
2006-11-02 14:55:03
·
answer #10
·
answered by Ashish B 4
·
0⤊
0⤋