English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Hmm... Okay.

Use the fact that the length of teh vector (x,y) is the square root of x^2 + y^2 and the geometric triangle ineq thm to argue that the square root of a^2 + b^2 + the square root of c^2 + d^2 is greater than the sq root of (a+c)^2 + (b+d)^2 for the vectors (a,b), (c,d) and their sum, (a+c, b+d).

...Get it?

2006-10-29 06:24:07 · 2 answers · asked by Anonymous in Science & Mathematics Mathematics

2 answers

To prove √[(a+c)² + (b+d)²] ≤ √(a+c)² + √(b+d)²

Let X = (a, b), Y = (c, d)
So X + Y = (a + c, b + d)

Triangle inequality says: |X + Y| ≤ |X| + |Y|

Now |X + Y| = √[(a+c)² + (b+d)²]
|X| = √[a² + b²] and |Y| = √[c² + d²]

Thus √[(a+c)² + (b+d)²] ≤ √[a² + b²] + √[c² + d²] QED

2006-10-29 07:36:42 · answer #1 · answered by Wal C 6 · 0 0

dunno your Geometric Triangle Inequality Theorem, but

a^2 +b^2 + c^2 + d^2 +2((a^2 +b^2)(c^2 + d^2))^0.5 >?
(a+c)^2 + (b+d)^2

a^2 + b^2 + c^2 + d^2 +2((a^2 +b^2)(c^2 + d^2))^0.5 >?
a^2 + 2ac + c^2 + b^2 + 2bd + d^2

2((a^2 + b^2)(c^2 + d^2))^0.5 >? 2ac + 2bd

4(a^2 + b^2)(c^2 + d^2) >? (2ac + 2bd)^2

4a^2c^2 +4a^2d^2 + 4b^2c^2 + 4 b^2d^2 >? 4a^2c^2 +4abcd + 4b^2d^2

a^2d^2 + b^2c^2 >? abcd

a^4d^4 + 2a^2b^2c^2d^2 +b^4c^4 > a^2b^2c^2d^2

2006-10-29 14:51:12 · answer #2 · answered by Helmut 7 · 0 0

fedest.com, questions and answers