English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

x^2 + 5x + 6 / x^2 + 4x + 4

/


x^2 - 9 / x^2 - 4

2006-10-26 10:10:34 · 6 answers · asked by Silentspeedster 2 in Science & Mathematics Mathematics

Simplify and state restrictions

2006-10-26 10:14:34 · update #1

6 answers

This is one equation, correct? Factor everything first:

(x+3)(x+2) / (x+2)(x+2)
/
(x+3)(x-3) / (x+2)(x-2)

Then, to get rid of the denominator, flip it and get everything together:

(x+3)(x+2) (x+2)(x-2) / (x+3)(x-3) (x+2)(x+2)

Finally, eliminate the factors that appear on both the top and the bottom. You are left with:

(x-2) / (x-3)

2006-10-26 10:25:06 · answer #1 · answered by Anonymous · 0 0

(x-2) / (x-3)

2006-10-26 17:15:58 · answer #2 · answered by cmadame 3 · 0 0

(x+2)*(x+3) / (x+2)*(x+2)
(x+2) cancels out
leaving: (x+3) / (x+2)

2006-10-26 17:25:34 · answer #3 · answered by Lo 1 · 0 0

(x+3)(x+2) / (x+2)(x+2)
(x+3) / (x+2)
x ≠ -2

(x-3)(x+3) / (x-2)(x+2)
x ≠ -2
x ≠ 2

2006-10-26 17:14:33 · answer #4 · answered by c00kies 5 · 0 0

I am intreperting it as a fraction over a fraction?
(x+3)(x+2) / (x+2)(x+2)
------------------------------ <-- my fraction bar
(x+3)(x-3) / (x+2)(x-2)

So reducing, canceling and performing a little mathmagic we get...

(x-2) / (x-3)

2006-10-26 17:18:19 · answer #5 · answered by iggry 2 · 0 1

The answer is "absolute zero"...

2006-10-26 17:12:43 · answer #6 · answered by Kiowa1 5 · 0 0

fedest.com, questions and answers