English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2006-10-24 01:15:37 · 5 answers · asked by PAVAN S 1 in Science & Mathematics Mathematics

5 answers

Since det(A) is a scalar (a number), det(det(A))=det(A). Since A(adj A)=(det(A)*I, we get that det(A)*det(adj A)=(det(A))^n where A is an nxn matrix. Hence det(adj A)=(det(A))^(n-1).

2006-10-24 01:24:36 · answer #1 · answered by mathematician 7 · 2 0

What Is Det

2017-01-09 23:14:21 · answer #2 · answered by nurdin 3 · 0 0

Def DET:: if A= [a(ij)],
det A = |A| = a(i1)A(i1)+....+a(in)A(in) = a(1j)A(1j)+....+a(nj)A(nj)

det(det A) = || A || :)

adj A = [a(ji)] = B

check the def det B = det A

2006-10-24 01:44:06 · answer #3 · answered by mathman241 6 · 0 0

DET(DET A)=detA, since the determinant is just a number

since A^(-1)=AdjA/detA,
det(adjA)=det(detA*A(-1)) = detA^(-1) * detA = det(I)=n, where A is (n x n)

maybe?

2006-10-24 01:27:24 · answer #4 · answered by tsunamijon 4 · 0 1

Let A be a nxn matrix then
Det A=a (say)
Det(DetA)=Det(a)
=Det(a)xDet (I) [where I is an identity matrix &Det(I)=1]
=Det(aI)
=a^n
=(DetA)^n
Recall A^(-1)=(AdjA)/DetA
Multiply both sides by A
I=A*A^(-1)=(A*AdjA)/DetA
DetA*I=A*AdjA
Taking determinant of both sides
Det(DetA*I)=Det(A*AdjA)
Det(DetA)*Det I=DetA*Det(AdjA)
(DetA)^n=DetA*Det(AdjA)
(DetA)^n-1=Det(AdjA)

2006-10-27 00:27:19 · answer #5 · answered by chill 2 · 0 0

fedest.com, questions and answers