Ernest Rutherford is generally credited with the discovery of the proton. In 1918 Rutherford noticed that when alpha particles were shot into nitrogen gas, his scintillation detectors showed the signatures of hydrogen nuclei. Rutherford determined that the only place this hydrogen could have come from was the nitrogen, and therefore nitrogen must contain hydrogen nuclei. He thus suggested that the hydrogen nucleus, which was known to have an atomic number of 1, was an elementary particle.
Prior to Rutherford, Eugene Goldstein had observed canal rays, which were composed of positively charged ions. After the discovery of the electron by J.J. Thomson, Goldstein suggested that since the atom is electrically neutral there must be a positively charged particle in the atom and tried to discover it. He used the "canal rays" observed to be moving against the electron flow in cathode ray tubes. After the electron had been removed from particles inside the cathode ray tube they became positively charged and moved towards the cathode. Most of the charged particles passed through the cathode, it being perforated, and produced a glow on the glass. At this point, Goldstein believed that he had discovered the proton.[citation needed] When he calculated the ratio of charge to mass of this new particle (which in case of the electron was found to be the same for every gas that was used in the cathode ray tube) was found to be different when the gases used were changed. The reason was simple. What Goldstein assumed to be a proton was actually an ion. He gave up his work there. But promised that "he would return."
In 1930 Walther Bothe and H. Becker in Germany found that if the very energetic alpha particles emitted from polonium fell on certain of the light elements, specifically beryllium, boron, or lithium, an unusually penetrating radiation was produced. At first this radiation was thought to be gamma radiation although it was more penetrating than any gamma rays known, and the details of experimental results were very difficult to interpret on this basis. The next important contribution was reported in 1932 by Irène Joliot-Curie and Frédéric Joliot in Paris. They showed that if this unknown radiation fell on paraffin or any other hydrogen-containing compound it ejected protons of very high energy. This was not in itself inconsistent with the assumed gamma ray nature of the new radiation, but detailed quantitative analysis of the data became increasingly difficult to reconcile with such a hypothesis. Finally (later in 1932) the physicist James Chadwick in England performed a series of experiments showing that the gamma ray hypothesis was untenable. He suggested that in fact the new radiation consisted of uncharged particles of approximately the mass of the proton, and he performed a series of experiments verifying his suggestion. Such uncharged particles were eventually called neutrons, apparently from the Latin root for neutral and the Greek ending -on (by imitation of electron and proton).
The word electron was coined in 1891 by George Johnstone Stoney and is derived from the term electric force introduced by William Gilbert. Its origin is in Greek: ήλεκτρον (elektron), meaning amber. J.J. Thomson is credited with having first measured the charge/mass ratio and is considered to be the discoverer of the electron.
2006-10-15 02:33:22
·
answer #1
·
answered by Anonymous
·
4⤊
0⤋
1897 Thomson discovers the electron
1911 Rutherford discovers the nucleus
1932 Chadwick discovers the neutron
and so on and so on. Somewhere between Thomson and Chadwick, physicists realized that there are positively charged constituents of the nucleus, which we call 'protons'. The way this happened was a gradual process, and that is why it is hard to say exactly who discovered the proton, although if you had put a name against it, it would be Ruthford, sort of.
After the discovery of the electron, it was realized that there must be positive charge centers within the atom to balance the negative electrons and create electrically neutral atoms. Rutherford's discovery of the nucleus demonstrated that these positive charges were concentrated in a very small fraction of the atoms' volume. In 1919 Rutherford discovered that he could change one element into another by striking it with energetic alpha particles (which we now know are just helium nuclei). In the early 1920's Rutherford and other physicists made a number experiments, transmuting one atom into another. In every case, hydrogen nuclei were emitted in the process. It was apparent that the hydrogen nucleus played a fundamental role in atomic structure, and by comparing nuclear masses to charges, it was realized that the positive charge of any nucleus could be accounted for by an integer number of hydrogen nuclei. By the late 1920's physicists were regularly referring to hydrogen nuclei as 'protons'. The term proton itself seems to have been coined by Rutherford, and first appears in print in 1920.
2006-10-15 02:56:29
·
answer #2
·
answered by Anonymous
·
0⤊
0⤋
Who Discovered Neutrons
2016-12-26 15:58:32
·
answer #3
·
answered by ? 4
·
0⤊
0⤋
Electron was discovered by 3) J.J. Thomson. One hundred years ago, amidst glowing glass tubes and the hum of electricity, the British physicist J.J. Thomson was venturing into the interior of the atom. At the Cavendish Laboratory at Cambridge University, Thomson was experimenting with currents of electricity inside empty glass tubes. He was investigating a long-standing puzzle known as "cathode rays." His experiments prompted him to make a bold proposal: these mysterious rays are streams of particles much smaller than atoms, they are in fact minuscule pieces of atoms. He called these particles "corpuscles," and suggested that they might make up all of the matter in atoms. It was startling to imagine a particle residing inside the atom--most people thought that the atom was indivisible, the most fundamental unit of matter. Thomson's speculation was not unambiguously supported by his experiments. It took more experimental work by Thomson and others to sort out the confusion. The atom is now known to contain other particles as well. Yet Thomson's bold suggestion that cathode rays were material constituents of atoms turned out to be correct. The rays are made up of electrons: very small, negatively charged particles that are indeed fundamental parts of every atom. He once said- "Could anything at first sight seem more impractical than a body which is so small that its mass is an insignificant fraction of the mass of an atom of hydrogen?" Modern ideas and technologies based on the electron, leading to television and the computer and much else, evolved through many difficult steps. Thomson's careful experiments and adventurous hypotheses were followed by crucial experimental and theoretical work by many others in the United Kingdom, Germany, France and elsewhere. These physicists opened for us a new perspective--a view from inside the atom.
2016-03-28 10:01:56
·
answer #4
·
answered by ? 4
·
0⤊
0⤋
Neutron:
James Chadwick 1932 (but Rutherford predicted it in 1920)
Electron:
J.J. Thomson 1897
Proton
Ernest Rutherford 1918
2006-10-15 03:10:45
·
answer #5
·
answered by Dr. J. 6
·
0⤊
0⤋
protons - Ernest Rutherford
neutrons - James Chadwick
electrons - Joseph John Thomson
2006-10-15 02:33:57
·
answer #6
·
answered by chiefie minnie 1
·
0⤊
0⤋