sin(2t) = 2sin(t)cos(t), so
sin(2t) + sin(t) = 0 => 2sin(t)cos(t) + sin(t) = 0
This is true if sin(t) = 0.
If sin(t) != 0 then divide by sin(t) to get
2cos(t) + 1 = 0
cos(t) = -1/2
So the solutions are t = 0, t = pi, t = 5pi/6, t = 7pi/6
cos(2u) = cos(u)^2 - sin(u)^2 = 2cos(u)^2 - 1, so
cos(u) + cos(2u) = 0 => cos(u) + 2cos(u)^2 - 1 = 0
let x = cos(u) then this is 2x^2 + x - 1 = 0
This factors to (2x - 1)(x + 1) = 0
so cos(u) = 1/2 or cos(u) = -1
u = pi/3 or 5pi/3 or pi
tan(2u) = sin(2u)/cos(2u) = 2sin(u)cos(u)/(cos(u)^2 - sin(u)^2) so
sin(u)/cos(u) = 2sin(u)cos(u)/(cos(u)^2 - sin(u)^2)
Cross multiply:
cos(u)^2sin(u)-sin(u)^3 = 2sin(u)cos(u)^2
If sin(u) = 0 this is true, so 0 and pi are 2 answers.
Otherwise divide by sin(u):
cos(u)^2 - sin(u)^2 = 2cos(u)^2
-sin(u)^2 = cos(u)^2 has no solutions (negative = positive), so the above are the only answers.
I hope there are no careless errors here, you'd better check to be sure.
2006-10-14 04:14:34
·
answer #1
·
answered by sofarsogood 5
·
0⤊
1⤋
a) Use the double-angle formula sin(2t) = 2sin(t)cos(t)
sin(2t) + sin(t) = 2sin(t)cos(t) + sin(t)
= sin(t)*[2cos(t) + 1] = 0
2 possibilities:
1) sin(t) = 0 ──> t = arcsin(0) = {0, π}
and
2) 2cos(t) + 1 = 0 ──> cos(t) = -1/2
──> t = arccos(-1/2) = {2π/3, 4π/3}
So your solutions are: t = {0, 2π/3, π, 4π/3}
b) Use the double-angle formula cos(2u) = cos²(u) - sin²(u)
And the pythagorean identity sin²(u) = 1 - cos²(u)
cos(2u) + cos(u) = [2cos²(u) -1] + cos(u)
= [2cos(u) - 1]*[cos(u) + 1] = 0
2 possibilities:
1) 2cos(u) - 1 = 0 ──> u = arccos(1/2) = {π/3, 5π/3}
2) cos(u) + 1 = 0 ──> u = arccos(-1) = π
So your solutions are: u = {π/3, π, 5π/3}
c) Use the double-angle formula tan(2u) = 2tan(u)/(1-tan²(u))
tan(2u)-tan(u) = 2tan(u)/(1-tan²(u)) - tan(u)
= tan(u)*[2/(1-tan²(u)) - 1] = tan(u)*[(2-1+tan²(u)) / (1-tan²(u))]
= tan(u)*[(1+tan²(u)) / (1-tan²(u))]
Now use the double-angle identity cos(2u) = (1+tan²(u)) / (1-tan²(u))
──> tan(2u) - tan(u) = tan(u)*[1 / cos(2u)] = 0
2 possibilities:
1) tan(u) = 0 ──> u = arctan(0) = {0, π}
2) [1 / cos(2u)] = 0
Since -1 ≤ cos(2u) ≤ +1, 1 / cos(2u) is never zero.
So your solutions are: u = {0, π}
2006-10-14 04:47:33
·
answer #2
·
answered by Anonymous
·
0⤊
0⤋
sin(2t) + sin(t) = 0
2 sin(t)cos(t) + sin(t) = 0
sin(t)[2cos(t) + 1] = 0
so either sin(t)=0, in which case t=0 or Pi
or cos(t) = -1/2, in which case t=2Pi/3 or 4Pi/3
(using fact that cos(Pi/3)=1/2, and cos(Pi-t)=-cos(t) to get 2Pi/3. also used cos(t)=cos(-t) to get t=-2Pi/3, then cos(t)=cos(2Pi+t) to get 4Pi/3)
cos(u) + cos(2u) = 0
cos(u) + 2 cos^2(u) - 1 = 0
quadratic formula:
cos(u) = (-1 +/- sqrt(1 - 4*2*-1))/4
= (-1 +/- sqrt(9))/4 =(-1 +/- 3)/4 = -1 or 1/2
cos(u) = -1 means u=Pi
cos(u)=1/2 means u=Pi/3 or 5Pi/3
tan(2u) = tan(u)
sin(2u)/cos(2u) = sin(u)/cos(u)
sin(2u)cos(u) = sin(u)cos(2u)
2sin(u)cos^2(u) = sin(u)[2cos^2(u)-1]
2sin(u)cos^2(u) = 2sin(u)cos^2(u)-sin(u)
sin(u)=0, so u=0 or Pi
2006-10-14 04:00:04
·
answer #3
·
answered by James L 5
·
1⤊
1⤋
sin(2t) + sin(t) = 0
or sin(t)(cos(t)+1) = 0
So, t = 0,pi
cos(u) + cos(2u) = 0
or 2cos^2(u)+cos(u)-1 = 0
or (2cos(u)-1)(cos(u)+1) = 0
u = pi,pi/3,5pi/3
tan(2u) = tan(u)
2tan(u) = tan(u)-tan^3(u)
or
2006-10-14 04:49:55
·
answer #4
·
answered by ag_iitkgp 7
·
0⤊
0⤋
enable x=sd2d0cff2c36798c4c639f6cfcb2a34nxd2d0cff2c36798c4c639f6cfcb2a34 then: d2d0cff2c36798c4c639f6cfcb2a34x^0,2pi + x=a million delta= a million+8=9 take the sq. root of delta=3 x1=(-a million+3)/4=a million/0,2pi xd2d0cff2c36798c4c639f6cfcb2a34=(-a million-3)/4=-a million sd2d0cff2c36798c4c639f6cfcb2a34nx=a million/d2d0cff2c36798c4c639f6cfcb2a34d2d0cff2c36798c4c639f6cfcb2a34 then x= d2d0cff2c36798c4c639f6cfcb2a34nverse of sd2d0cff2c36798c4c639f6cfcb2a34n(a million/0,2pi)=3d2d0cff2c36798c4c639f6cfcb2a34 stages sd2d0cff2c36798c4c639f6cfcb2a34nx=-1d2d0cff2c36798c4c639f6cfcb2a34 the x= the d2d0cff2c36798c4c639f6cfcb2a34nverse of sd2d0cff2c36798c4c639f6cfcb2a34n(-a million)=d2d0cff2c36798c4c639f6cfcb2a347d2d0cff2c36798c4c639f6cfcb2a34 stages the d2d0cff2c36798c4c639f6cfcb2a34nterval [d2d0cff2c36798c4c639f6cfcb2a34d2d0cff2c36798c4c639f6cfcb2a34d2d0cff2c36798c4c639f6cfcb2a34d2d0cff2c36798c4c639f6cfcb2a34d2d0cff2c36798c4c639f6cfcb2a34]0,2pi the solutd2d0cff2c36798c4c639f6cfcb2a34ons are x1=a million/d2d0cff2c36798c4c639f6cfcb2a34d2d0cff2c36798c4c639f6cfcb2a34 xd2d0cff2c36798c4c639f6cfcb2a34=-a million
2016-11-28 04:56:34
·
answer #5
·
answered by zito 4
·
0⤊
0⤋