Nanotechnology is a field of applied science focused on the design, synthesis, characterization and application of materials and devices on the nanoscale. Nanotechnology is a sub classification of technology in colloidal science, biology, physics,chemistry and other scientific fields and involves the study of phenomena and manipulation of material at the nanoscale, in essence an extension of existing sciences into the nanoscale. Two main approaches are used in nanotechnology: one is a "bottom-up" approach where materials and devices are built up atom by atom, the other a "top-down" approach where they are synthesized or constructed by removing existing material from larger entities. A unique aspect of nanotechnology is the vastly increased ratio of surface area to volume present in many nanoscale materials, which opens new possibilities in surface-based science, such as catalysis. This catalytic activity also opens potential risks in their interaction with biomaterials.
The impetus for nanotechnology has stemmed from a renewed interest in colloidal science, coupled with a new generation of analytical tools such as the atomic force microscope (AFM) and the scanning tunneling microscope (STM). Combined with refined processes such as electron beam lithography, these instruments allow the deliberate manipulation of nanostructures. These new materials and structures have in turn led to the observation of novel phenomena such as the “quantum size effect” where the electronic properties of solids are altered with great reductions in particle size. This effect does not come into play by going from macro to micro dimensions. However, it becomes dominant when the nanometer size range is reached. Nanotechnology is also used as an umbrella term to describe emerging or novel technological developments associated with microscopic dimensions. Despite the great promise of numerous nanotechnologies such as quantum dots and nanotubes, real applications that have moved out of the lab and into the marketplace have mainly utilized the advantages of colloidal nanoparticles, such as suntan lotion, cosmetics, protective coatings and stain resistant textiles.
Characterization
A number of physical phenomena become noticeably pronounced as the size of the system decreases. These include statistical mechanical effects, as well as quantum mechanical effects. Additionally, a number of physical properties change when compared to macroscopic systems. One example is the increase in surface to volume of materials.
Nanotechnology can be thought of as extensions of traditional disciplines towards the explicit consideration of these properties. Additionally, traditional disciplines can be re-interpreted as specific applications of nanotechnology. This dynamic reciprocation of ideas and concepts contributes to the modern understanding of the field. Broadly speaking, nanotechnology is the synthesis and application of ideas from science and engineering towards the understanding and production of novel materials and devices. These products generally make copious use of physical properties associated with small scales.
General fields involved with proper characterization of these systems include physics, chemistry, and biology, as well as mechanical and electrical engineering. However, due to the inter- and multidisciplinary nature of nanotechnology, subdisciplines such as physical chemistry, materials science, or biomedical engineering are considered significant or essential components of nanotechnology. The proper design, synthesis, characterization, and application of materials are dominant concerns of nanotechnologists. The manufacture of polymers based on molecular structure, or the design of computer chip layouts based on surface science are examples of nanotechnology in modern use. Colloidal suspensions also play an essential role in nanotechnology.
Materials reduced to the nanoscale can suddenly show very different properties compared to what they exhibit on a macroscale, enabling unique applications. For instance, opaque substances become transparent (copper); inert materials become catalysts (platinum); stable materials turn combustible (aluminum); solids turn into liquids at room temperature (gold); insulators become conductors (silicon). Much of the fascination with nanotechnology stems from these unique quantum and surface phenomena that matter exhibits at the nanoscale.
You could get more information from the link below...
2006-10-10 22:33:40
·
answer #1
·
answered by catzpaw 6
·
0⤊
0⤋
Nanotechnology is a catch-all phrase for materials and devices that operate at the nanoscale. In the metric system of measurement, “Nano” equals a billionth and therefore a nanometer is one-billionth of a meter. References to nano materials, nanoelectronics, nano devices and nanopowders simply mean the material or activity can be measured in nanometers. To appreciate the size, a human red blood cell is over 2,000 nanometers long, virtually outside the nanoscale range!
2006-10-11 02:35:07
·
answer #2
·
answered by Jayandran 1
·
0⤊
0⤋
nanotechnology, the science of the small. Nano is Greek for dwarf, and nanoscience deals with the study of molecular and atomic particles, a world that is measured in nanometers (billionths of a meter or 10-9 ).
Nanotechnology research has focusly primarily on molecular manufacturing -- the creation of tools, materials, and machines that will eventually enable us "to snap together the fundamental building blocks of nature easily, inexpensively and in most of the ways permitted by the laws of physics." A leading nanotech scientist describes past efforts at molecular level manufacturing as attempts to assemble LEGO pieces while wearing boxing gloves. Nanotechnology, he believes, will enable us to take off the gloves and build extraordinary things.
2006-10-10 21:54:40
·
answer #3
·
answered by schmushe 6
·
0⤊
0⤋
Nanotechnology is a field of applied science focused on the design, synthesis, characterization and application of materials and devices on the nanoscale. Nanotechnology is a sub classification of technology in colloidal science, biology, physics,chemistry and other scientific fields and involves the study of phenomena and manipulation of material at the nanoscale, in essence an extension of existing sciences into the nanoscale. Two main approaches are used in nanotechnology: one is a "bottom-up" approach where materials and devices are built up atom by atom, the other a "top-down" approach where they are synthesized or constructed by removing existing material from larger entities. A unique aspect of nanotechnology is the vastly increased ratio of surface area to volume present in many nanoscale materials, which opens new possibilities in surface-based science, such as catalysis. This catalytic activity also opens potential risks in their interaction with biomaterials.
2006-10-10 21:54:31
·
answer #4
·
answered by Anonymous
·
0⤊
0⤋
It's worth pointing out that the word "nanotechnology" has become very popular and is used to describe many types of research where the characteristic dimensions are less than about 1,000 nanometers. For example, continued improvements in lithography have resulted in line widths that are less than one micron: this work is often called "nanotechnology." Sub-micron lithography is clearly very valuable (ask anyone who uses a computer!) but it is equally clear that conventional lithography will not let us build semiconductor devices in which individual dopant atoms are located at specific lattice sites. Many of the exponentially improving trends in computer hardware capability have remained steady for the last 50 years. There is fairly widespread belief that these trends are likely to continue for at least another several years, but then conventional lithography starts to reach its limits.
a little from more.
2006-10-11 17:30:28
·
answer #5
·
answered by veerabhadrasarma m 7
·
0⤊
0⤋
Very small technology, simply
2006-10-10 22:20:44
·
answer #6
·
answered by JG 2
·
0⤊
0⤋
Its related with production of nanoparticles may be from bilogical, microbiological or any synthetic method. Nanoparticles have tremendous scope in future.
2006-10-11 02:09:54
·
answer #7
·
answered by sapkalgirishd 1
·
0⤊
0⤋
http://www.nanotech-now.com/
2006-10-10 21:54:17
·
answer #8
·
answered by indianborntowin 2
·
0⤊
0⤋