English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

I want to know the sum of this progression
1 + a^(2) + a^(4 + a^(6) + ......... + a^(n-2).Here "n" is an even integer.

2006-10-07 21:05:49 · 5 answers · asked by rajesh bhowmick 2 in Science & Mathematics Mathematics

The progression is
1 + a^(2) + a^(4) + ...... + a^(n-2)

2006-10-07 21:15:34 · update #1

5 answers

Let sum be S. Therefore
S=1 + a^(2) + a^(4) + a^(6) + ......... + a^(n-2) ....(1)
multiplying by a^2
(a^2)S=a^(2) + a^(4) + a^(6) + ......... + a^(n-2) + a^n ...(2)
Substracting (2) from (1)
(1-a^2)S=1-a^n
S=(1-a^n)/(1-a^2)

2006-10-07 23:06:55 · answer #1 · answered by LodhiRajput 3 · 0 0

It's a geometric series with A1=1, q=a^2

2006-10-07 21:13:26 · answer #2 · answered by Anonymous · 0 0

given:
s(n)=1+a^2+a^2+.......+a^(n-2)

we want to calculate the sum of this expression for n as any even Integer

We use a trick, because we rewrite the expression i opposit order, and add it to the expression:


......s(n)=1+ a^2 + a^4+.......+a^(n-2)
....+s(n)= a^(n-2)+ a^(n-4)......+a^n + a^0
-------------------------------------------------------
..2*s(n)=1+a^n + a^n+........+a^n +1

Now we have because n is an even integer

..2*s(n)=2+ (n/2)(a^n) <=>

s(n)=1+(n/4)(a^n) <=>

s(n)=1+(n*(a^n))/4
==============

2006-10-08 00:22:13 · answer #3 · answered by Broden 4 · 0 1

Note that:
Let [k=1, (n-2)/2]∑a^(2k) = S
Then a²S=S-1+a^n
So (a²-1)S=a^n-1
Therefore S=(a^n - 1)/(a²-1)

2006-10-07 21:14:32 · answer #4 · answered by Pascal 7 · 0 0

google search.

2006-10-07 21:08:21 · answer #5 · answered by SKG R 6 · 0 0

fedest.com, questions and answers