English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2006-10-06 18:21:54 · 6 answers · asked by Anonymous in Science & Mathematics Mathematics

6 answers

Hi Dear Bunky;

{ as you know if;
f(x) = u(x) / v(x) ;
f '(x) = u ' v - u v ' / (v) ²
It is the formula you should use.}

-Now ,
f(x) = (x ² +7) / (x-4)
let u = x ² +7 , u' = 2x
let v = x - 4 , v' = 1

-Now follow the formula;
f '(x) = u ' v - u v ' / (v) ²
f '(x) = [(2x)( x - 4) - ( x ² +7) (1) ] / (4 -x) ²
f '(x) = [- 8x + 2x ² - x ² -7 ] / (4 -x) ²
f '(x) = ( x ² - 8x - 7) / (4 -x) ²

Good Luck.

2006-10-06 22:33:55 · answer #1 · answered by sweetie 5 · 5 0

This can even be done simpler

(x^2+7)/(x-4) =(x+4)+23 /(x-4) using synthetic division

differentiating we get 1-23(x-4)^-2

2006-10-07 02:13:46 · answer #2 · answered by Mein Hoon Na 7 · 0 0

f(x) = (x^2 + 7)/(x - 4)
f'(x) = [(x - 4)(2x) - (x^2 + 7)]/(x - 4)^2
= (2x^2 - 8x - x^2 + 7)/(x - 4)^2
= (x^2 - 8x - 7)/(x - 4)^2

2006-10-07 06:54:06 · answer #3 · answered by emee_rocks 2 · 0 0

f(x) = (x^2 + 7)/(x - 4)

f'(x) = (((x - 4)(x^2 + 7)') - ((x - 4)'(x^2 + 7)))/((x - 4)^2)
f'(x) = (((x - 4)(2x)) - (1(x^2 + 7)))/((x - 4)^2)
f'(x) = (2x^2 - 8x - x^2 - 7)/((x - 4)^2)
f'(x) = (x^2 - 8x - 7)/((x - 4)^2)

ANS : (x^2 - 8x - 7)/((x - 4)^2) or (x^2 - 8x - 7)/(x^2 - 8x + 16)

2006-10-07 11:05:51 · answer #4 · answered by Sherman81 6 · 0 0

ley y = (X^2+7)/(X-4)
SO Y' =( (x-4)d/dx(x^2+7) - (x^2+7)d/dx(x-4) )/(X-4)^2
(USING FORMULA
d/dx(u/v) = (v.du/dx-u.dv/dv) /v^2
so y' = ((x-4)2x - (x^2+7)1)/(x-4)^2
=> y' = (2x^2 - 8x - x^2 - 7)/(x-4)^2
=> y' = (x^2-8x-7)/(x-4)^2
thats answer

2006-10-07 01:38:21 · answer #5 · answered by neo 2 · 0 0

just use u/v rule

2006-10-07 03:56:23 · answer #6 · answered by nakshatra 2 · 0 0

fedest.com, questions and answers