Complicated.
2006-10-06 13:41:57
·
answer #1
·
answered by stroupy5 1
·
0⤊
1⤋
Diffusion, being the spontaneous spreading of matter (particles), heat, or momentum, is one type of transport phenomenon. Diffusion is the movement of particles from higher chemical potential to lower chemical potential (chemical potential can in most cases of diffusion be represented by a change in concentration). It is readily observed, for example, when dried food like spaghetti is cooked; water molecules diffuse into the spaghetti strings, making them thicker and more flexible. It is a physical process rather than a chemical reaction, which requires no net energy expenditure. In cell biology, diffusion is often described as a form of passive transport, by which substances cross membranes.
2006-10-06 13:42:18
·
answer #2
·
answered by violetb 5
·
0⤊
1⤋
Diffusion is getting as many different answers as possible
2006-10-06 13:47:54
·
answer #3
·
answered by Anonymous
·
0⤊
1⤋
Diffusion is the movement of molecules from a higher concentration to a lower concentration until equilibrium is achieved at which point the net movement of molecules is equal in both directions thereby maintaining equilibrium.
2006-10-06 13:43:56
·
answer #4
·
answered by OU812 5
·
0⤊
1⤋
diffusion
ADVERTISEMENT
in chemistry, the spontaneous migration of substances from regions where their concentration is high to regions where their concentration is low. Diffusion is important in many life processes. It occurs, for example, across the alveolar membrane of the lung, which separates the carbon-dioxide-rich blood from the oxygen-rich air. Oxygen diffuses across the membrane and becomes dissolved in the blood; carbon dioxide diffuses across the membrane into the air.
The spontaneous redistribution of a substance is due to the random motion of the molecules (or atoms or ions) of the substance. Because of the random nature of the motion of molecules, the rate of diffusion of molecules out of any region in a substance is proportional to the concentration of molecules in that region, and the rate of diffusion into the region is proportional to the concentration of molecules in the surrounding regions. Thus, while molecules continuously flow both into and out of all regions, the net flow is from regions of higher concentration to regions of lower concentration. Generally, the greater the difference in concentration, the faster the diffusion.
Since an increase in temperature represents an increase in the average molecular speed, diffusion occurs faster at higher temperatures. At any given temperature, small, light molecules (such as H2, hydrogen gas) diffuse faster than larger, more massive molecules (such as N2, nitrogen gas) because they are traveling faster, on the average (see heat; kinetic-molecular theory of gases). According to Graham's law (for Thomas Graham), the rate at which a gas diffuses is inversely proportional to the square root of the density of the gas.
Diffusion often masks gravitational effects. For example, if a relatively dense gas (such as CO2, carbon dioxide) is introduced at the bottom of a vessel containing a less dense gas (such as H2, hydrogen gas), the dense gas will diffuse upward and the less dense gas will diffuse downward. It is true, however, that at equilibrium the two gases will not be uniformly mixed. There will be some variation in the density and composition of the gas mixture; at the top of the vessel the gas mixture will be slightly less concentrated, and there will be a slight preponderance of molecules of the less dense gas. These differences, which are due to gravity, are almost impossible to measure in the laboratory, although they interact with other factors in determining the distribution of gases in planetary atmosphere.
Diffusion is not confined to gases; it can take place with matter in any state. For example, salt diffuses (dissolves) into water; water diffuses (evaporates) into the air. It is even possible for a solid to diffuse into another solid; e.g., gold will diffuse into lead, although at room temperature this diffusion is very slow. Generally, gases diffuse much faster than liquids, and liquids much faster than solids. Diffusion may take place through a semipermeable membrane, which allows some, but not all, substances to pass. In solutions, when the liquid solvent passes through the membrane but the solute (dissolved solid) is retained, the process is called osmosis. Diffusion of a solute across a membrane is called dialysis, especially when some solutes pass and others are retained.
2006-10-06 13:42:51
·
answer #5
·
answered by Anonymous
·
0⤊
1⤋
(physics) the process of diffusing; the intermingling of molecules in gases and liquids as a result of random thermal agitation
the spread of social institutions (and myths and skills) from one society to another
dissemination: the property of being diffused or dispersed
dispersion: the act of dispersing or diffusing something; "the dispersion of the troops"; "the diffusion of knowledge"
2006-10-06 13:52:51
·
answer #6
·
answered by puertofrican 3
·
0⤊
1⤋
diffusion is when gas or liquid "flow" to take up the space in a container. It is when they spread out to fill something.
2006-10-06 13:42:54
·
answer #7
·
answered by ed-dg 2
·
0⤊
1⤋
Diffusion, being the spontaneous spreading of matter (particles), heat, or momentum, is one type of transport phenomenon. Diffusion is the movement of particles from higher chemical potential to lower chemical potential (chemical potential can in most cases of diffusion be represented by a change in concentration). It is readily observed, for example, when dried food like spaghetti is cooked; water molecules diffuse into the spaghetti strings, making them thicker and more flexible. It is a physical process rather than a chemical reaction, which requires no net energy expenditure. In cell biology, diffusion is often described as a form of passive transport, by which substances cross membranes. also:
in chemistry, the spontaneous migration of substances from regions where their concentration is high to regions where their concentration is low. Diffusion is important in many life processes. It occurs, for example, across the alveolar membrane of the lung, which separates the carbon-dioxide-rich blood from the oxygen-rich air. Oxygen diffuses across the membrane and becomes dissolved in the blood; carbon dioxide diffuses across the membrane into the air.
The spontaneous redistribution of a substance is due to the random motion of the molecules (or atoms or ions) of the substance. Because of the random nature of the motion of molecules, the rate of diffusion of molecules out of any region in a substance is proportional to the concentration of molecules in that region, and the rate of diffusion into the region is proportional to the concentration of molecules in the surrounding regions. Thus, while molecules continuously flow both into and out of all regions, the net flow is from regions of higher concentration to regions of lower concentration. Generally, the greater the difference in concentration, the faster the diffusion.
Since an increase in temperature represents an increase in the average molecular speed, diffusion occurs faster at higher temperatures. At any given temperature, small, light molecules (such as H2, hydrogen gas) diffuse faster than larger, more massive molecules (such as N2, nitrogen gas) because they are traveling faster, on the average (see heat; kinetic-molecular theory of gases). According to Graham's law (for Thomas Graham), the rate at which a gas diffuses is inversely proportional to the square root of the density of the gas.
Diffusion often masks gravitational effects. For example, if a relatively dense gas (such as CO2, carbon dioxide) is introduced at the bottom of a vessel containing a less dense gas (such as H2, hydrogen gas), the dense gas will diffuse upward and the less dense gas will diffuse downward. It is true, however, that at equilibrium the two gases will not be uniformly mixed. There will be some variation in the density and composition of the gas mixture; at the top of the vessel the gas mixture will be slightly less concentrated, and there will be a slight preponderance of molecules of the less dense gas. These differences, which are due to gravity, are almost impossible to measure in the laboratory, although they interact with other factors in determining the distribution of gases in planetary atmosphere.
Diffusion is not confined to gases; it can take place with matter in any state. For example, salt diffuses (dissolves) into water; water diffuses (evaporates) into the air. It is even possible for a solid to diffuse into another solid; e.g., gold will diffuse into lead, although at room temperature this diffusion is very slow. Generally, gases diffuse much faster than liquids, and liquids much faster than solids. Diffusion may take place through a semipermeable membrane, which allows some, but not all, substances to pass. In solutions, when the liquid solvent passes through the membrane but the solute (dissolved solid) is retained, the process is called osmosis. Diffusion of a solute across a membrane is called dialysis, especially when some solutes pass and others are retained.
2006-10-06 13:57:09
·
answer #8
·
answered by Anonymous
·
0⤊
1⤋
The perfect definition of diffusion is when Kenny Rodgers BLOWS SMOKE PAST THE "AWESOME" YANKEES LINE-UP!!!!
2006-10-07 07:12:31
·
answer #9
·
answered by Anonymous
·
0⤊
0⤋