English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2006-10-04 12:26:07 · 9 answers · asked by Ivan Brown 1 in Science & Mathematics Astronomy & Space

9 answers

Difficult to compete with a pasted encyclopedia web page. Anyway... here's my simple words explanation: The sun is constantly emitting radiation called the solar wind, this solar wind is not constant in intensity it changes with the solar activity, the greater the solar activity, the greater or more intense the solar wind. This radiations or solar wind travel in all directions and of course they hit the earth. Earth's magnetic field is the shield that protects life on earth from these direct radiations, most of the solar wind bounces off and around earth and continues through deep space. Some of the solar wind is trapped in the magnetic field where it ionizes and reacts with the atmosphere's elements mainly hidrogen and oxygen but also traces of other elements. The magnetic field as most know run from pole to pole therefore the least concentration of energy is at the ecuator and the highest concentration of energy is at the north and south pole. The excess energy is released as light known as the Aurora Borealis at the North Pole and Aurora Australis at the South Pole. The changes in light are due to the interaction with different elements in the atmosphere. These "Northern Lights" as they are sometimes called are an everyday phenomena but they are most spectacular when the sun has great bursts of activity. If you wish to see the most beautiful Auroras, you can keep watch of the sun activity in many internet sites and on the periods of greatest activity you may see Auroras as far South as Toronto in Canada if you are away from the city itself and have a clear sky.

2006-10-04 13:46:41 · answer #1 · answered by Alex S 3 · 0 0

The phenomenon is an aurora -- borealis means "northern." There is also an aurora austalis, "southern" aurora.

Charged particles are being constantly emitted by our sun. These charged particles, moving quite fast, arrive at earth and get channeled by the earth's magnetic field to our poles, where they enter the atmosphere. These energetic charged particles ionize molecules in the air, causing them to flouresce -- and you have an aurora.
There is almost always an aurora at both poles, though most of the time it doesn't extend down more than a few degrees of latitude from the poles, where nobody lives, so few people see them. When the sun throws off a particularly large bunch of charged particles (such as during a coronal mass ejection), so many particles arrive that the aurora can become visible at lower latitudes. It's a really beautiful show :)

2006-10-04 12:35:31 · answer #2 · answered by Anonymous · 0 0

The Earth's magnetic field interacts with the magnetic field in the Solar Wind. This causes some of the magnetic field lines, the ones that go to the polar regions, to be "open". This allows energetic particles to get into the Earth's magnetosphere and hit the atmosphere. This causes ionization of atoms high in the atmosphere, followed by re-combination into excited energy states. The aurora is the spectral line radiation coming from those excited atoms.

2006-10-04 12:34:27 · answer #3 · answered by cosmo 7 · 0 0

(borealis) The sun sends out a stream of radiating particles called the solar wind. This wind is attracted to the magnetic poles in the North and south. When the wind hits the atmosphere, the particles react with gases, and this creates different light and colours. The lights are called aurora borealis in the north and aurora australis in the south poles

2006-10-04 12:32:47 · answer #4 · answered by • Nick • 4 · 0 0

a "solar wind" of ions (hydrogen and helium nuclei stripped of electrons) streams from the sun.

These electrically charged particles are captured by the magnetic lines of force in the earth's magnetic field, and carried to the poles.

As they enter the atmosphere, electrons rush to join them and form normal atoms. The energy of these collisions produces photons, producing the effect called aurora.

2006-10-04 12:37:17 · answer #5 · answered by disco legend zeke 4 · 0 0

Solar wind particles interacting with Earth's magnetic field. The particles become ionized and the electron energy level changes may be displayed as color.

2006-10-04 12:32:35 · answer #6 · answered by Dr. J. 6 · 0 0

Solar flare output meeting earth's magnetic field.

2006-10-04 12:29:43 · answer #7 · answered by FrogDog 4 · 0 0

i think it has something to do with the northern lights

2006-10-04 12:30:39 · answer #8 · answered by DiL 2 · 0 1

The aurora is a bright glow observed in the night sky, usually in the polar zone. For this reason some scientists call it a "polar aurora" (or "aurora polaris"). In northern latitudes it is known as the aurora borealis (IPA /ɔˈɹɔɹə bɔɹiˈælɪs/), which is named after the Roman goddess of the dawn, Aurora, and the Greek name for north wind, Boreas, since in Europe especially it often appears as a reddish glow on the northern horizon as if the sun were rising from an unusual direction. The aurora borealis is also called the northern lights. The aurora borealis most often occurs from September to October and from March to April. Its southern counterpart, aurora australis, has similar properties.

Auroral mechanism
The aurora is now known to be caused by electrons of typical energy of 1-15 keV, i.e. the energy obtained by the electrons passing through a voltage difference of 1,000-15,000 volts. The light is produced when they collide with atoms of the upper atmosphere, typically at altitudes of 80-150 km. It tends to be dominated by emissions of atomic oxygen--the greenish line at 557.7 nm and (especially with electrons of lower energy and higher altitude) the dark-red line at 630.0 nm. Both these represent forbidden transitions of atomic oxygen from energy levels which (in absence of collisions) persist for a long time, accounting for the slow brightening and fading (0.5-1 sec) of auroral rays. Many other lines can also be observed, especially those of molecular nitrogen, and these vary much faster, revealing the true dynamic nature of the aurora.

Auroras can also be observed in the ultra-violet (UV) light, a very good way of observing it from space (but not from ground--the atmosphere absorbs UV). The Polar spacecraft even observed it in X-rays. The image is very rough, but precipitation of high-energy electrons can be identified.

[edit]
Auroral forms and magnetism
A coronaTypically the aurora appears either as a diffuse glow or as "curtains" that approximately extend in the east-west direction. At some times, they form "quiet arcs", at others ("active aurora") they evolve and change constantly. Each curtain consists of many parallel rays, each lined up with the local direction of the magnetic field lines, suggesting that aurora is shaped by the Earth's magnetic field, Indeed, satellites show auroral electrons to be guided by magnetic field lines, spiraling around them while moving earthwards.

The curtains often show folds called "striations". When the field line guiding a bright auroral patch leads to a point directly above the observer, the aurora may appear as a "corona" of diverging rays, an effect of perspective.

In 1741, Hiorter and Celsius first noticed other evidence for magnetic control, namely, large magnetic fluctuations occurred whenever the aurora was observed overhead. This indicates (it was later realized) that large electric currents were associated with the aurora, flowing in the region where auroral light originated. Kristian Birkeland (1908)[1] deduced that the currents flowed in the east-west directions along the auroral arc, and such currents, flowing from the dayside towards (approximately) midnight were later named "auroral electrojets" (see also Birkeland currents).

Still more evidence for a magnetic connection are the statistics of auroral observations. Elias Loomis (1860) and later in more detail Hermann Fritz (1881)[2] established that the aurora appeared mainly in the "auroral zone", a ring-shaped region of approx. radius 2500 km around the magnetic pole of the Earth, not its geographic one. It was hardly ever seen near that pole itself. The instantaneous distribution of auroras ("auroral oval", Yasha [or Yakov] Felds[h]tein 1963[3]) is slightly different, centered about 3-5 degrees nightward of the magnetic pole, so that auroral arcs reach furthest equatorward around midnight.

The solar wind and magnetosphere
Schematic of Earth's magnetosphereThe Earth is constantly immersed in the solar wind, a rarefied flow of hot plasma (gas of free electrons and positive ions) emitted by the sun in all directions, a result of the million-degree heat of the sun's outermost layer, the solar corona. The solar wind usually reaches Earth with a velocity around 400 km/s, density around 5 ions/cc and magnetic field intensity around 2–5 nT (nanoteslas; the Earth's surface field is typically 30,000–50,000 nT). These are typical values. During magnetic storms, in particular, flows can be several times faster; the interplanetary magnetic field (IMF) may also be much stronger.

The IMF originates on the sun, related to the field of sunspots, and its field lines (lines of force) are dragged out by the solar wind. That alone would tend to line them up in the sun-earth direction, but the rotation of the Sun skews them (at Earth) by about 45 degrees, so that field lines passing Earth may actually start near the western edge ("limb") of the visible sun.

The Earth's magnetosphere is the space region dominated by its magnetic field. It forms an obstacle in the path of the solar wind, causing it to be diverted around it, at a distance of about 70,000 km (before it reaches that boundary, typically 12,000–15,000 km upstream, a bow shock forms). The width of the magnetospheric obstacle, abreast of Earth is typically 190,000 km, and on the night side a long "magnetotail" of stretched field lines extends to great distances.

[edit]
Frequency of occurrence
Aurora australis 1994 from latitude 47 degrees southThe aurora is a common occurrence in the ring-shaped zone. It is occasionally seen in temperate latitudes, when a strong magnetic storm temporarily expands the auroral oval. Large magnetic storms are most common during the peak of the 11-year sunspot cycle, or during the 3 years after that peak. However, within the auroral zone the likelihood of an aurora occurring depends mostly on the slant of IMF lines (known as Bz, pronounced "bee-sub-zed" or "bee-sub-zee"), being greater with southward slants.

Geomagnetic storms that ignite auroras actually happen more often during the months around the equinoxes. It is not well understood why geomagnetic storms are tied to the Earth's seasons when polar activity is not. It is known, however, that during spring and autumn, the earth's and the interplanetary magnetic field link up. At the magnetopause, Earth's magnetic field points north. When Bz becomes large and negative (i.e., the IMF tilts south) it can partially cancel Earth's magnetic field at the point of contact. South-pointing Bz's open a door through which energy from the solar wind can reach Earth's inner magnetosphere.

The peaking of Bz during this time is a result of geometry. The interplanetary magnetic field comes from the Sun and is carried outward the solar wind. Because the Sun rotates the IMF has a spiral shape. Earth's magnetic dipole axis is most closely aligned with the Parker spiral in April and October. As a result, southward (and northward) excursions of Bz are greatest then.

However, Bz is not the only influence on geomagnetic activity. The Sun's rotation axis is tilted 7 degrees with respect to the plane of Earth's orbit. Because the solar wind blows more rapidly from the Sun's poles than from its equator, the average speed of particles buffeting Earth's magnetosphere waxes and wanes every six months. The solar wind speed is greatest -- by about 50 km/s, on average -- around 5 September and March 5 when Earth lies at its highest heliographic latitude.

Still, neither Bz nor the solar wind can fully explain the seasonal behavior of geomagnetic storms. Those factors together contribute only about one-third of the observed semiannual variation.

[edit]
The origin of the aurora
Aurora australis (September 11, 2005) as captured by NASA's IMAGE satellite, digitally overlaid onto the Blue Marble composite image.The ultimate energy source of the aurora is undoubtedly the solar wind flowing past the Earth.

Both the magnetosphere and the solar wind consist of plasma, which can conduct electricity. It is well known (since Faraday's work around 1830) that if two electric conductors are immersed in a magnetic field and one moves relative to the other, while a closed electric circuit exists which threads both conductors, then an electric current will arise in that circuit. Electric generators or dynamos make use of this process ("the dynamo effect"), but the conductors can also be plasmas or other fluids.

In particular the solar wind and the magnetosphere are two electrically conducting fluids with such relative motion, and should be able (in principle) to generate electric currents by "dynamo action", in the process also extracting energy from the flow of the solar wind. The process is hampered by the fact plasmas conduct easily along magnetic field lines but not so perpendicular to them. It is therefore important that a temporary magnetic interconnection be established between the field lines of the solar wind and those of the magnetosphere, by a process known as magnetic reconnection. It happens most easily with a southward slant of interplanetary field lines, because then field lines north of Earth approximately match the direction of field lines near the north magnetic pole (namely, into the earth), and similarly near the southern pole. Indeed, active auroras (and related "substorms") are much more likely at such times.

Electric currents originating in such fashion apparently give auroral electrons their energy. The magnetospheric plasma has an abundance of electrons: some are magnetically trapped, some reside in the magnetotail, and some exists in the upwards extension of the ionosphere, which may extend (with diminishing density) some 25,000 km around the Earth.

Bright auroras are generally associated with Birkeland currents (Schield et al., 1969[4]; Zmuda and Armstrong, 1973[5]) which flow down into the ionosphere on one side of the pole and out on the other. In between, some of the current connects directly through the ionospheric E layer (125 km), the rest ("region 2") detours, leaving again through field lines closer to the equator and closing through the "partial ring current" carried by magnetically trapped plasma. The ionosphere is an ohmic conductor, so such currents require a driving voltage, which some dynamo mechanism can supply. Electric field probes in orbit above the polar cap suggest voltages of the order of 40,000 volts, rising up to more than 200,000 volts during intense magnetic storms.

Ionospheric resistance has a complex nature, and leads to a secondary Hall current flow. By a strange twist of physics, the magnetic disturbance on the ground due to the main current almost cancels out, so most of the observed effect of auroras is due to a secondary current, the auroral electrojet. An auroral electrojet index (measured in nanotesla) is regularly derived from ground data, and serves as a general measure of auroral activity.

However, ohmic resistance is not the only obstacle to current flow in this circuit. The convergence of magnetic field lines near Earth creates a "mirror effect" which turns back most of the down-flowing electrons (where currents flow upwards), inhibiting current-carrying capacity. To overcome this, part of the available voltage appears along the field line ("parallel to the field"), helping electrons overcome that obstacle by widening the bundle of trajectories reaching Earth; a similar "parallel voltage" is used in "tandem mirror" plasma containment devices. A feature of such voltage is that it is concentrated near Earth (potential proportional to field intensity; Persson, 1963[6]) and indeed, as deduced by Evans (1974) and confirmed by satellites, most auroral acceleration occurs below 10,000 km. Another indicator of parallel electric fields along field lines are beams of upwards flowing O+ ions observed on auroral field lines.

While this mechanism is probably the main source of the familiar auroral arcs, formations conspicuous from the ground, more energy might go to other, less prominent types of aurora, e.g. the diffuse aurora (below) and the low-energy electrons precipitated in magnetic storms (also below).

The Aurora Borealis as viewed from the ISS Expedition 6 team.Some O+ ions ("conics") also seem accelerated in different ways by plasma processes associated with the aurora. These ions are accelerated by plasma waves, in directions mainly perpendicular to the field lines. They therefore start at their own "mirror points" and can travel only upwards. As they do so, the "mirror effect" transforms their directions of motion, from perpendicular to the line to lying on a cone around it, which gradually narrows down.)

In addition, the aurora and associated currents produce a strong radio emission around 150 kHz known as auroral kilometric radiation (AKR, discovered in 1972). Ionospheric absorption makes AKR observable from space only.

These "parallel voltages" accelerate electrons to auroral energies and seem to be a major source of aurora. Other mechanisms have also been proposed, in particular, Alfvén waves, wave modes involving the magnetic field first noted by Hannes Alfvén (1942), which have been observed in the lab and in space. The question is however whether this might just be a different way of looking at the above process, because this approach does not point out a different energy source, and many plasma bulk phenomena can also be described in terms of Alfvén waves.

Other processes are also involved in the aurora, and much remains to be learned. Auroral electrons created by large geomagnetic storms often seem to have energies below 1 keV, and are stopped higher up, near 200 km. Such low energies excite mainly the red line of oxygen, so that often such auroras are red. On the other hand, positive ions also reach the ionosphere at such time, with energies of 20-30 keV, suggesting they might be an "overflow" along magnetic field lines of the copious "ring current" ions accelerated at such times, by processes different from the ones described above.

Aurora Borealis (file info)
Aurora Borealis from ISS
Problems viewing the video? See media help.
[edit]
Sources and types of aurora
Again, our understanding is very incomplete. A rough guess may point out three main sources:

Dynamo action with the solar wind flowing past Earth, possibly producing quiet auroral arcs ("directly driven" process). The circuit of the accelerating currents and their connection to the solar wind are uncertain.
Dynamo action involving plasma squeezed earthward by sudden convulsions of the magnetotail ("magnetic substorms"). Substorms tend to occur after prolonged spells (hours) during which the interplanetary magnetic field has an appreciable southward component, leading to a high rate of interconnection between its field lines and those of Earth. As a result the solar wind moves magnetic flux (tubes of magnetic field lines, moving together with their resident plasma) from the day side of Earth to the magnetotail, widening the obstacle it presents to the solar wind flow, and causing it to be squeezed harder. Ultimately the tail plasma is torn ("magnetic reconnection") --some blobs ("plasmoids") are squeezed tailwards and are carried away with the solar wind, others are squeezed earthwards where their motion feeds large outbursts of aurora, mainly around midnight ("unloading process"). Geomagnetic storms have similar effects, but with greater vigor. The big difference is the addition of many particles to the plasma trapped around Earth, enhancing the "ring current" which it carries. The resulting modification of the Earth's field allows aurora to be visible at middle latitudes, on field lines much closer to the equator.
Satellite images of the aurora from above show a "ring of fire" along the auroral oval (see above), often widest at midnight. That is the "diffuse aurora", not distinct enough to be seen by the eye. It does not seem to be associated with acceleration by electric currents (although currents and their arcs may be embedded in it) but to be due to electrons leaking out of the magnetotail.
Any magnetic trapping is leaky--there always exists a bundle of directions ("loss cone") around the guiding magnetic field lines where particles are not trapped but escape. In the radiation belts of Earth, once particles on such trajectories are gone, new ones only replace them very slowly, leaving such directions nearly "empty". In the magnetotail, however, particle trajectories seem to be constantly reshuffled, probably when the particles cross the very weak field near the equator. As a result the flow of electrons in all directions is nearly the same ("isotropic"), and that assures a steady supply of leaking electrons.

The energization of such electrons comes from magnetotail processes. The leakage of negative electrons does not leave the tail positively charged, because each leaked the electron lost to the atmosphere is quickly replaced by a low energy electron drawn upwards from the ionosphere. Such replacement of "hot" electrons by "cold" ones is in complete accord with the 2nd law of thermodynamics.

Other types of aurora have been observed from space, e.g. "poleward arcs" stretching sunward across the polar cap, the related "theta aurora", and "dayside arcs" near noon. These are relatively infrequent and poorly understood. Space does not allow discussion of other effects such as flickering aurora, "black aurora" and subvisual red arcs. In addition to all these, a weak glow (often deep red) has been observed around the two polar cusps, the "funnels" of field lines separating the ones that close on the day side of Earth from lines swept into the tail. The cusps allow a small amount of solar wind to reach the top of the atmosphere, producing an auroral glow.

[edit]
Auroras on other planets
Jupiter aurora. The bright spot at far left is the end of field line to Io, spots at bottom lead to Ganymede and Europa.Both Jupiter and Saturn have magnetic fields much stronger than Earth's (Uranus, Neptune and Mercury are also magnetic), and both have large radiation belts. Aurora has been observed on both, most clearly with the Hubble telescope.

These auroras seem, like Earth's, to be powered by the solar wind. In addition, however, Jupiter's moons, especially Io, are also powerful sources of auroras. These arise from electric currents along field lines ("field aligned currents"), generated by a dynamo mechanism due to relative motion between the rotating planet and the moving moon. Io, which has active volcanism and an ionosphere, is a particularly strong source, and its currents also generate radio emissions, studied since 1955.

An aurora has recently been detected on Mars, even though it was thought that the lack of a strong magnetic field would not make one possible. [1]

[edit]
Obsolete theories
Auroral electrons come from beams emitted by the sun. This was claimed around 1900 by Kristian Birkeland, whose experiments in a vacuum chamber with electron beams and magnetized spheres (miniature models of the Earth or "terrellas") showed that such electrons would be guided towards the polar regions. Problems with this model included absence of aurora at the poles themselves, self-dispersal of such beams by their negative charge, and more recently, lack of any observational evidence in space.
The aurora is the overflow of the radiation belt ("leaky bucket theory"). This was first disproved around 1962 by James Van Allen and co-workers, who showed that the high rate at which energy was dissipated by the aurora would quickly drain all that was available in the radiation belt. Soon afterwards it became clear that most of the energy in trapped particles resided in positive ions, while auroral particles were almost always electrons, of relatively low energy.
The aurora is produced by solar wind particles guided by the Earth's field lines to the top of the atmosphere. This holds true for the cusp aurora, but outside the cusp, the solar wind has no direct access. In addition, the main energy in the solar wind resides in positive ions; electrons only have about 0.5 eV (electron volt), and while in the cusp this may be raised to 50–100 eV, that still falls short of auroral energies.
[edit]
Auroral sounds
Throughout history people have written and spoken of sounds associated with auroral displays, often describing them as crackling, hissing, buzzing, or whistling. Danish explorer Knud Rasmussen mentioned them indirectly in 1932 while describing the folk traditions of Greenland Eskimos. The same sounds in the same context are mentioned in an account written by Canadian anthropologist Ernest Hawkes in 1916. Cornelius Tacitus (AD 56-120), an ancient Roman historian, wrote that people from the north of (modern) Germany claimed to hear them.

Today, many people continue to report these sounds, but despite their many anecdotal reports, nobody has yet managed to record the sounds, and there are scientific problems with the idea of the sounds being true sound waves originating in the auroras. The energy of the auroras and other factors make it extremely improbable that any sounds directly produced by auroral discharges would reach the ground, and the coincidence of sounds with the visible changes in the auroras conflicts with the necessary propagation time for any sounds from the discharges themselves. Some people speculate that local electrostatic phenomena induced by the auroras might explain the sounds; theories associated with brush discharges seem to fit the reported observations best, although no theory thus far provides a completely satisfactory explanation.

[edit]
Auroral images
Images of aurora are significantly more common today due to the rise in digital camera use with high enough sensitivities. [2] Film and digital exposure to auroral displays is frought with many difficulties, particularly if faithfulness of reproduction is an important objective. Due to the different spectral energy present, and changing dynamically throughout the exposure, the results are somewhat unpredictable. Different layers of the film emulsion respond differently to lower light levels, and choice of film can be very important. Longer exposures aggregate the rapidly changing energy and often blanket the dynamic attribute of a display. Higher sensitivity creates issues with graininess. David Malin pioneered multiple exposure using multiple filters for astronomical photography, recombining the images in the laboratory to recreate the visual display more accurately. [3] For scientific research, proxies are often used, such as ultra-violet, and re-coloured to simulate the appearance to humans. Predictive techniques are also used, to indicate the extent of the display, a highly useful tool for aurora hunters. [4] Terrestrial features often find their way into aurora images, making them more accessible and more likely to be published by the major websites. [5] It is possible to take excellent images with standard film (employing ISO ratings between 100 and 400) and an SLR with full aperture, a fast lens (f1.4 50mm, for example), and an exposures between 10 and 30 seconds, depending on the aurora's display strength. 2001 image

Guide to seeing and imaging aurora australis here: Guide
[edit]
Aurora in folklore
In Bulfinch's Mythology from 1855 by Thomas Bulfinch there is the claim that in Norse mythology:

The Valkyrior are warlike virgins, mounted upon horses and armed with helmets and spears. /.../ When they ride forth on their errand, their armour sheds a strange flickering light, which flashes up over the northern skies, making what men call the "aurora borealis", or "Northern Lights". [6]
While a striking notion, there is nothing in the Old Norse literature supporting this assertion. Although auroral activity is common over Scandinavia and Iceland today, it is possible that the Magnetic North Pole was considerably further away from this region during the centuries before the documentation of Norse mythology, thus explaining the absent references. [7]

The first Old Norse account of norðurljós is instead found in the Norwegian chronicle Konungs Skuggsjá from AD 1250. The chronicler has heard about this phenomenon from compatriots returning from Greenland, and he gives three possible explanations: that the Ocean was surrounded by vast fires, that the sun flares could reach around the world to its night side, or that glaciers could store energy so that they eventually became fluorescent. [8]

An old Scandinavian name for northern lights translates as herring flash. It was believed that northern lights were the reflections cast by large swarms of herring onto the sky.

Another Scandinavian source refers to 'the fires that surround the North and South edges of the world'. This has been put forward as evidence that the Norse ventured as far as Antarctica, although this is insufficient to form a solid conclusion.

The Finnish name for northern lights is revontulet, fox fires. According to legend, foxes made of fire lived in Lapland, and revontulet were the sparks they whisked up into the atmosphere with their tails.

In Estonian they are called virmalised, a spirit beings of higher realms. On some legends they are given negative characters on some positive ones.

The Sami people believed that one should be particularly careful and quiet when observed by the northern lights (called guovssahasat in Northern Sami). Mocking the northern lights or singing about them was believed to be particularly dangerous, and could cause the lights to descend on the mocker and kill him.

The Algonquin believed the lights to be their ancestors dancing around a ceremonial fire.

In Inuit folklore, northern lights were the spirits of the dead playing football with a walrus skull over the sky.

The Inuit also used the aurora to get their children home after dark by claiming that if you whistled in their presence they would come down and burn you up.

In Latvian folklore northern lights, especially if red and observed in winter, are believed to be fighting souls of dead warriors, an omen foretelling disaster (especially war or famine).

In Scotland, the northern lights were known as "the merry dancers" or na fir-chlis. There are many old sayings about them, including the Scottish Gaelic proverb "When the merry dancers play, they are like to slay." The playfulness of the merry dancers was supposed to end occasionally in quite a serious fight, and next morning when children saw patches of red lichen on the stones, they say amongst themselves that "the merry dancers bled each other last night". The appearance of these lights in the sky was considered a sign of the approach of unsettled weather.

2006-10-04 12:43:03 · answer #9 · answered by croc hunter fan 4 · 0 0

fedest.com, questions and answers