Ethanol, also known as ethyl alcohol or grain alcohol, is a flammable, colorless, mildly toxic chemical compound with a distinctive odor, and is the alcohol found in alcoholic beverages. In common usage, it is often referred to simply as alcohol. Its molecular formula is C2H6O, variously represented as EtOH, C2H5OH or as its empirical formula C2H6O.
Ethanol is produced both as a petrochemical, through the hydration of ethylene, and biologically, by fermenting sugars with yeast.
[edit]
Ethylene hydration
Ethanol for use as industrial feedstock is most often made from petrochemical feedstocks, typically by the acid-catalyzed hydration of ethylene, represented by the chemical equation
C2H4 + H2O → CH3CH2OH
The catalyst is most commonly phosphoric acid, adsorbed onto a porous support such as diatomaceous earth or charcoal; this catalyst was first used for large-scale ethanol production by the Shell Oil Company in 1947.[6] Solid catalysts, mostly various metal oxides, have also been mentioned in the chemical literature.
In an older process, first practiced on the industrial scale in 1930 by Union Carbide[7], but now almost entirely obsolete, ethene was hydrated indirectly by reacting it with concentrated sulfuric acid to product ethyl sulfate, which was then hydrolysed to yield ethanol and regenerate the sulfuric acid:
C2H4 + H2SO4 → CH3CH2SO4H
CH3CH2SO4H + H2O → CH3CH2OH + H2SO4
[edit]
Fermentation
Ethanol for use in alcoholic beverages, and the vast majority of ethanol for use as fuel, is produced by fermentation: when certain species of yeast (most importantly, Saccharomyces cerevisiae) metabolize sugar in the absence of oxygen, they produce ethanol and carbon dioxide. The overall chemical reaction conducted by the yeast may be represented by the chemical equation
C6H12O6 → 2 CH3CH2OH + 2 CO2
The process of culturing yeast under conditions to produce alcohol is referred to as brewing. Brewing can only produce relatively dilute concentrations of ethanol in water; concentrated ethanol solutions are toxic to yeast. The most ethanol-tolerant strains of yeast can survive in up to about 25% ethanol (by volume).
During the fermentation process, it is important to prevent oxygen getting to the ethanol, since otherwise the ethanol would be oxidised to acetic acid (vinegar). Also, in the presence of oxygen, the yeast would undergo aerobic respiration to produce just carbon dioxide and water, without producing ethanol.
In order to produce ethanol from starchy materials such as cereal grains, the starch must first be broken down into sugars. In brewing beer, this has traditionally been accomplished allowing the grain to germinate, or malt. In the process of germination, the seed produces enzymes that can break its starches into sugars. For fuel ethanol, this hydrolysis of starch into glucose is accomplished more rapidly by treatment with dilute sulfuric acid, fungal amylase enzymes, or some combination of the two.
At petroleum prices like those that prevailed through much of the 1990s, ethylene hydration was a decidedly more economical process than fermentation for producing purified ethanol. Recent increases in petroleum prices, coupled with perennial uncertainty in agricultural prices, make forecasting the relative production costs of fermented versus petrochemical ethanol difficult at the present time.
Purification
Mid-Infrared spectrum of a thin film of liquid ethanol.
Near infrared spectrum of liquid ethanol.The product of either ethylene hydration or brewing is an ethanol-water mixture. For most industrial and fuel uses, the ethanol must be purified. Fractional distillation can concentrate ethanol to 96% volume; the mixture of 96% ethanol and 4% water is an azeotrope with a boiling point of 78.2 °C, and cannot be further purified by distillation. Therefore, 95% ethanol in water is a fairly common solvent.
After distillation ethanol can be further purified by "drying" it using lime or salt. Lime, (calcium oxide), when mixed with the water in ethanol will form calcium hydroxide, which then can be separated. Dry salt will dissolve some of the water content of the ethanol as it passes through, leaving a purer alcohol.[8]
Several approaches are used to produce absolute ethanol. The ethanol-water azeotrope can be broken by the addition of a small quantity of benzene. Benzene, ethanol, and water form a ternary azeotrope with a boiling point of 64.9 °C. Since this azeotrope is more volatile than the ethanol-water azeotrope, it can be fractionally distilled out of the ethanol-water mixture, extracting essentially all of the water in the process. The bottoms from such a distillation is anhydrous ethanol, with several parts per million residual benzene. Benzene is toxic to humans, and cyclohexane has largely supplanted benzene in its role as the entrainer in this process.
Alternatively, a molecular sieve can be used to selectively absorb the water from the 96% ethanol solution. Synthetic zeolite in pellet form can be used, as well as a variety of plant-derived absorbents, including cornmeal, straw, and sawdust. The zeolite bed can be regenerated essentially an unlimited number of times by drying it with a blast of hot carbon dioxide. Cornmeal and other plant-derived absorbents cannot readily be regenerated, but where ethanol is made from grain, they are often available at low cost. Absolute ethanol produced this way has no residual benzene, and can be used as fuel, or, when diluted, can even be used to fortify port and sherry in traditional winery operations.
At pressures less than atmospheric pressure, the composition of the ethanol-water azeotrope shifts to more ethanol-rich mixtures, and at pressures less than 70 torr (9.333 kPa) , there is no azeotrope, and it is possible to distill absolute ethanol from an ethanol-water mixture. While vacuum distillation of ethanol is not presently economical, pressure-swing distillation is a topic of current research. In this technique, a reduced-pressure distillation first yields an ethanol-water mixture of more than 96% ethanol. Then, fractional distillation of this mixture at atmospheric pressure distills off the 96% azeotrope, leaving anhydrous ethanol at the bottoms.
Prospective technologies
Main article: Cellulosic ethanol
Glucose for fermentation into ethanol can also be obtained from cellulose. Until recently, however, the cost of the cellulase enzymes that could hydrolyse cellulose has been prohibitive. The Canadian firm Iogen brought the first cellulose-based ethanol plant on-stream in 2004.[9] The primary consumer thus far has been the Canadian government, which, along with the United States government (particularly the Department of Energy's National Renewable Energy Laboratory), has invested millions of dollars into assisting the commercialization of cellulosic ethanol. Realization of this technology would turn a number of cellulose-containing agricultural byproducts, such as corncobs, straw, and sawdust, into renewable energy resources.
Cellulosic materials typically contain, in addition to cellulose, other polysaccharides, including hemicellulose. When hydrolysed, hemicellulose breaks down into mostly five-carbon sugars such as xylose. S. cerevisiae, the yeast most commonly used for ethanol production, cannot metabolize xylose. Other yeasts and bacteria are under investigation to metabolize xylose and so improve the ethanol yield from cellulosic material.[10][11]
The anaerobic bacterium Clostridium ljungdahlii, recently discovered in commercial chicken wastes, can produce ethanol from single-carbon sources including synthesis gas, a mixture of carbon monoxide and hydrogen that can be generated from the partial combustion of either fossil fuels or biomass. Use of these bacteria to produce ethanol from synthesis gas has progressed to the pilot plant stage at the BRI Energy facility in Fayetteville, Arkansas[12]; in the BRI process, the heat released by gasification can be used to co-produce electricity with ethanol.
Another prospective technology is the closed-loop ethanol plant. Ethanol produced from corn has a number of critics who suggest that it is primarily just recycled fossil fuels because of the energy required to grow the grain and convert it into ethanol. However, the closed-loop ethanol plant attempts to address this criticism. In a closed-loop plant, the energy for the distillation comes from fermented manure, produced from cattle that have been fed the by-products from the distillation. The leftover manure is then used to fertilize the soil used to grow the grain. Such a process is expected to have a much lower fossil fuel requirement.[13]
[edit]
Ethanol
[edit]
Denatured alcohol
Main article: Denatured alcohol
In most jurisdictions, the sale of ethanol, as a pure substance, or in the form of alcoholic beverages, is heavily taxed. In order to relieve non-beverage industries of this tax burden, governments specify formulations for denatured alcohol, which consists of ethanol blended with various additives to render it unfit for human consumption. These additives, called denaturants, are generally either toxic (such as methanol) or have unpleasant tastes or odors (such as denatonium benzoate).
Specialty denatured alcohols are denatured alcohol formulations intended for a particular industrial use, containing denaturants chosen so as not to interfere with that use. While they are not taxed, purchasers of specialty denatured alcohols must have a government-issued permit for the particular formulation they use and must comply with other regulations.
Completely denatured alcohols are formulations that can be purchased for any legal purpose, without permit, bond, or other regulatory compliance. It is intended that it be difficult to isolate a product fit for human consumption from completely denatured alcohol. For example, the completely denatured alcohol formulation used in the United Kingdom contains (by volume) 89.66% ethanol, 9.46% methanol, 0.50% pyridine, 0.38% naphtha, and is dyed purple with methyl violet.[14]
[edit]
Hydrous and anhydrous ethanol
Hydrous and anhydrous ethanol are terms used to describe ethanol by the type of process used to covert biomass into fuel. There are different prices for each anhydrous and hydrous ethanol depending on market demands.
The term hydrous pyrolysis is sometimes used to encompass thermolysis in the presence of water, such as steam cracking of oil, or more generally hydrous pyrolysis. An example of the latter is thermal depolymerization of organic waste into light crude oil.
Anhydrous (without water) pyrolysis can be used to produce liquid fuel similar to diesel from solid biomass. The most common technique uses very low residence times (<2 seconds) and high heating rates using a temperature between 350-500 °C. It is called either fast or flash pyrolysis.'
Anhydrous Alcohol can also be produced from hydrous(95-96%) alcohol using drying agents like molecular sieves, or by azeotropic distillation, extractive distillation techniques.
[edit]
Absolute ethanol
Absolute or anhydrous alcohol generally refers to purified ethanol, containing no more than one percent water.
It is not possible to obtain absolute alcohol by simple fractional distillation, because a mixture containing around 95.6% alcohol and 4.4% water becomes a constant boiling mixture (an azeotropic mixture). In one common industrial method to obtain 100% pure alcohol, a small quantity of benzene is added to rectified spirit and the mixture is then distilled. Absolute alcohol is obtained in third fraction that distills over at 78.2 °C (351.3 K).
Because a small amount of the benzene used remains in the solution, absolute alcohol produced by this method is not suitable for consumption as benzene is carcinogenic.
There is also an absolute alcohol production process by desiccation using glycerol. Alcohol produced by this method is known as spectroscopic alcohol - so called because the absence of benzene makes it suitable as a solvent in spectroscopy.
Currently, the most popular method of purification past 95.6% purity is desiccation using adsorbents such as starch or zeolites. These adsorb water preferentially.
[edit]
Feedstocks
Currently the main feedstock in the United States for the production of ethanol is corn, but trials of a new crop, switchgrass, are showing much greater yields.[citation needed]
The dominant ethanol feedstock in warmer regions is sugarcane.
In some parts of Europe, particularly France and Italy, wine is used as a feedstock due to massive oversupply.
[edit]
Use
[edit]
As a fuel
A Ford Taurus "fueled by clean burning ethanol" (New York City, New York, U.S.).Main article: ethanol fuel
The largest single use of ethanol is as a motor fuel and fuel additive. The largest national fuel ethanol industries exist in Brazil (all fuel sold in Brazil contains at least 20% ethanol).[15] One method of production is through fermentation of sugar. Ethanol has a lower energy content than gasoline.[16][17] In the United States, the color yellow (symbolizing the color of corn) has become associated with the fuel and is commonly used on fuel pumps and labels.
[edit]
Alcoholic beverages
Main article: Alcoholic beverage
Alcoholic beverages vary considerably in their ethanol content and in the foodstuffs from which they are produced. Most alcoholic beverages can be broadly classified as fermented beverages, beverages made by the action of yeast on sugary foodstuffs, or as distilled beverages, beverages whose preparation involves concentrating the ethanol in fermented beverages by distillation. The ethanol content of a beverage is usually measured in terms of the volume fraction of ethanol in the beverage, expressed either as a percentage or in alcoholic proof units.
Fermented beverages can be broadly classified by the foodstuff from which they are fermented. Beers are made from cereal grains or other starchy materials, wines and ciders from fruit juices, and meads from honey. Cultures around the world have made fermented beverages from numerous other foodstuffs, and local and national names for various fermented beverages abound. Fermented beverages may contain up to 15–20% ethanol by volume, the upper limit being set by the yeast's tolerance for ethanol, or by the amount of sugar in the starting material.
Distilled beverages are made by distilling fermented beverages. Broad categories of distilled beverages include whiskies, distilled from fermented cereal grains; brandies, distilled from fermented fruit juices, and rum, distilled from fermented molasses or sugarcane juice. Vodka and similar neutral grain spirits can be distilled from any fermented material (grain or potatoes is most common); these spirits are so thoroughly distilled that no tastes from the particular starting material remain. Numerous other spirits and liqueurs are prepared by infusing flavors from fruits, herbs, and spices into distilled spirits. A traditional example is gin, the infusion of juniper berries into neutral grain alcohol.
In a few beverages, ethanol is concentrated by means other than distillation. Applejack is traditionally made by freeze distillation: water is frozen out of fermented apple cider, leaving a more ethanol-rich liquid behind. Fortified wines are prepared by adding brandy or some other distilled spirit to partially-fermented wine. This kills the yeast and conserves some of the sugar in grape juice; such beverages are not only more ethanol-rich, but also sweeter than other wines.
[edit]
Chemicals derived from ethanol
Ethyl esters
In the presence of an acid catalyst (typically sulfuric acid) ethanol reacts with carboxylic acids to produce ethyl esters:
CH3CH2OH + RCOOH → RCOOCH2CH3 + H2O
The two largest-volume ethyl esters are ethyl acrylate (from ethanol and acrylic acid) and ethyl acetate (from ethanol and acetic acid). Ethyl acrylate is a monomer used to prepare acrylate polymers for use in coatings and adhesives. Ethyl acetate is a common solvent used in paints, coatings, and in the pharmaceutical industry; its most familiar application in the household is as a solvent for nail polish. A variety of other ethyl esters are used in much smaller volumes as artificial fruit flavorings.
Vinegar
Vinegar is a dilute solution of acetic acid prepared by the action of Acetobacter bacteria on ethanol solutions. Although traditionally prepared from alcoholic beverages including wine, apple cider, and unhopped beer, vinegar can also be made from solutions of industrial ethanol. Vinegar made from distilled ethanol is called "distilled vinegar", and is commonly used in food pickling and as a condiment.
Ethylamines
When heated to 150–220 °C over a silica- or alumina-supported nickel catalyst, ethanol and ammonia react to produce ethylamine. Further reaction leads to diethylamine and triethylamine:
CH3CH2OH + NH3 → CH3CH2NH2 + H2O
CH3CH2OH + CH3CH2NH2 → (CH3CH2)2NH + H2O
CH3CH2OH + (CH3CH2)2NH → (CH3CH2)3N + H2O
The ethylamines find use in the synthesis of pharmaceuticals, agricultural chemicals, and surfactants.
Other chemicals
Ethanol is a versatile chemical feedstock, and in the past has been used commercially to synthesize dozens of other high-volume chemical commodities. At the present, it has been supplanted in many applications by less costly petrochemical feedstocks. However, in markets with abundant agricultural products, but a less developed petrochemical infrastructure, such as China, Pakistan, India, and Brazil, ethanol can be used to produce chemicals that would be produced from petroleum in the West, including ethylene and butadiene.
[edit]
Other uses
Ethanol is easily soluble in water in all proportions with a slight overall decrease in volume when the two are mixed. Absolute ethanol and 95% ethanol are themselves good solvents, somewhat less polar than water and used in perfumes, paints and tinctures. Other proportions of ethanol with water or other solvents can also be used as a solvent. Alcoholic drinks have a large variety of tastes because various flavor compounds are dissolved during brewing. When ethanol is produced as a mixing beverage it is a neutral grain spirit.
Ethanol is used in medical wipes and in most common antibacterial hand sanitizer gels at a concentration of about 62% (percentage by weight, not volume) as an antiseptic. The peak of the disinfecting power occurs around 70% ethanol; stronger and weaker solutions of ethanol have a lessened ability to disinfect. Solutions of this strength are often used in laboratories for disinfecting work surfaces. Ethanol kills organisms by denaturing their proteins and dissolving their lipids and is effective against most bacteria and fungi, and many viruses, but is ineffective against bacterial spores. Alcohol does not act like an antibiotic and is not effective against infections by ingestion. Ethanol in the low concentrations typically found in most alcoholic beverages does not have useful disinfectant or antiseptic properties, internally or externally.
Wine with less than 16% ethanol cannot protect itself against bacteria. Because of this, port is often fortified with ethanol to at least 18% ethanol by volume to halt fermentation for retaining sweetness and in preparation for aging, at which point it becomes possible to prevent the invasion of bacteria into the port, and to store the port for long periods of time in wooden containers that can 'breathe', thereby permitting the port to age safely without spoiling. Because of ethanol's disinfectant property, alcoholic beverages of 18% ethanol or more by volume can be safely stored for a very long time.
[edit]
Metabolism and toxicology
Main article: Ethanol Metabolism
Pure ethanol is a tasteless liquid with a strong and distinctive odor that produces a characteristic heat-like sensation when brought into contact with the tongue or mucous membranes. When applied to open wounds (as for disinfection) it produces a strong stinging sensation. Pure or highly concentrated ethanol may permanently damage living tissue on contact. Ethanol applied to unbroken skin cools the skin rapidly through evaporation.
In the human body, ethanol is first oxidized to acetaldehyde, and then to acetic acid. The first step is catalysed by the enzyme alcohol dehydrogenase, and the second by acetaldehyde dehydrogenase. Some individuals have less effective forms of one or both of these enzymes, and can experience more severe symptoms from ethanol consumption than others. Conversely, those who have acquired ethanol tolerance have a greater quantity of these enzymes, and metabolize ethanol more rapidly.
BAC (mg/dL) Symptoms
50 Euphoria, talkativeness, relaxation
100 Central nervous system depression, impaired motor and sensory function, impaired cognition
>140 Decreased blood flow to brain
300 Stupefaction, possible unconsciousness
400 Possible death
>550 Death highly likely
[18] The amount of ethanol in the body is typically quanitified by blood alcohol content (BAC), the milligrams of ethanol per 100 milliliters of blood. The table at right summarizes the symptoms of ethanol consumption. Small doses of ethanol generally produce euphoria and relaxation; people experiencing these symptoms tend to become talkative and less inhibited, and may exhibit poor judgment. At higher dosages (BAC > 0.10), ethanol acts as a central nervous system depressant, producing at progressively higher dosages, impaired sensory and motor function, slowed cognition, stupefaction, unconsciousness, and possible death.
The initial product of ethanol metabolism, acetaldehyde, is more toxic than ethanol itself. The body can quickly detoxify some acetaldehyde by reaction with glutathione and similar thiol-containing biomolecules. When acetaldehyde is produced beyond the capacity of the body's glutathione supply to detoxify it, it accumulates in the bloodstream until further oxidized to acetic acid. The headache, nausea, and malaise associated with an alcohol hangover stem from a combination of dehydration and acetaldehyde poisoning; many health conditions associated with chronic ethanol abuse, including liver cirrhosis, alcoholism, and some forms of cancer, have been linked to acetaldehyde.[citation needed] The judicial system in the United States, in a number of jurisdictions, promoted the use of disulfiram, known as Antabuse, for persons convicted of driving while (alcohol) intoxicated. Disulfuram interferes with hepatic acetaldehyde metabolism, exacerbating the discomforts noted above. Numerous deaths, said to be related to disulfuram use, led to the elimination of these court-based programs. Some medications, including paracetamol (acetaminophen), as well as exposure to organochlorides, can deplete the body's glutathione supply, enhancing both the acute and long-term risks of even moderate ethanol consumption. Frequent use of alcoholic beverages has also been shown to be a major contributing factor in cases of elevated blood levels of triglycerides.
Ethanol has been shown to increase the growth of Acinetobacter baumannii, a bacterium responsible for pneumonia, meningitis and urinary tract infections. This finding may contradict the common misconception that drinking alcohol could kill off a budding infection. (Smith and Snyder, 2005)
Hazards
Ethanol-water solutions greater than about 50% ethanol by volume are flammable and easily ignited.
2006-10-02 18:48:33
·
answer #1
·
answered by Glen 3
·
0⤊
0⤋