English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2006-10-01 05:25:49 · 4 answers · asked by Anonymous in Science & Mathematics Mathematics

4 answers

D(e^2u) = 2e^2u D(e^u + e^-u) = e^u - e^-u

D((e^2u)/(e^u + e^-u))
= (2e^2u(e^u + e^-u) - e^2u(e^u - e^-u))/(e^u + e^-u)^2
=(2e^3u + 2e^u - e^3u + e^u)/(e^2u + e^-2u +2)
=(e^3u + 3e^u)/(e^2u + e^-2u + 2)

2006-10-01 05:54:45 · answer #1 · answered by wild_turkey_willie 5 · 0 0

Here's logarithmic differentiation. We haven't learned it in my calculus class yet. I taught myself, so it's probably wrong:

y = (e^(2u)) / (e^u+e^(-u))

ln y = ln ((e^(2u)) / (e^u + e^(-u)))

ln y = ln e^u + ln e^u - ln (e^u + e^(-u))

ln y = u*ln e + u*ln e - ln (e^u + e^(-u))

ln y = 2u - ln (e^u + e^(-u))

1/y * dy/dx = 2 - (1/e^u + e^(-u))(e^u - e^(-u))

1/y * dy/dx = 2 - (e^u - e^(-u))/(e^u + e^(-u))

dy/dx = (2 - (e^u - e^(-u))/(e^u + e^(-u)))((e^(2u)) / (e^u + e^(-u)))

dy/dx = (2e^(2u) / (e^u + e(-u))) - ((e^(3u) - e^u) / ((e^u + e^(-u))^2))

2006-10-01 05:37:46 · answer #2 · answered by عبد الله (ドラゴン) 5 · 0 0

you need the division rule and logarithmic differentiation to do this one:
(der. of numerator)(denominator) - (der. denominator)(num)
-----------------------------------------------------------------------------
(denominator)^2

der of numerator = 2e^2u
der of denominator = e^u - e^u = 0

figure the rest out hah.

2006-10-01 05:40:42 · answer #3 · answered by IspeakToRocks 2 · 0 0

something I don't understand / something I will never understand

2006-10-01 05:29:20 · answer #4 · answered by Anonymous · 0 1

fedest.com, questions and answers