English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Find the second derivative of

f(x) = ln [ (3x^3 + 3)^4]

2006-09-27 07:17:12 · 2 answers · asked by Girl 5 in Science & Mathematics Mathematics

2 answers

We remember that:

f(x) = ln(x)

(f(x))' = 1/x so



f(x) = y = ln[(3x^3 + 3)^4]


y' = ?


We have: 1/(3x^3 + 3)^4 X 4(3x^3 + 3)^3 X 9x^2

= 4(3x^3 + 3)^3 X 9x^2/(3x^3 +3)^4

= 4(3^3 + 3)^3 X 9x^2/((3x^3 +3)^3.(3x^3 +3)

Answer = 36x^2/(3x^3 + 3)


Nota:'' X '' = multiplication sign.

2006-09-27 07:40:05 · answer #1 · answered by frank 7 · 1 0

f'(x)=[1/((3x^3 + 3)^4]4((3x^3 + 3)^3) ( 9x^2)
=36 x^2 / (3x^3 + 3)

f''(x)= [ (3x^3 + 3)(72x)-36x^2(9x^2)]/(3x^3 + 3)^2

and then you can try to simplify

2006-09-27 07:19:45 · answer #2 · answered by Anonymous · 1 0

fedest.com, questions and answers