English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2006-09-24 18:42:53 · 13 answers · asked by Anonymous in Science & Mathematics Mathematics

13 answers

x^2+(1/x^2)-2=6-2
(x-1/x)^2=4
x-1/x=+/-2

2006-09-24 20:19:53 · answer #1 · answered by Anonymous · 1 0

2

2006-09-25 01:53:49 · answer #2 · answered by Hari 1 · 1 0

(x - 1/x)^2 = x^2 + 1/x^2 -2 = 6-2 =4
==> (x - 1/x) = +/- 2

2006-09-25 06:39:55 · answer #3 · answered by cosmic_ashim 2 · 0 0

x² + 1/x² = 6 (x X²)
x^4 + 1 = 6x²
x^4 - 6x² + 1 = 0
Let z = x²
z² - 6z + 1 = 0 (Now use quadratic formula).
z = 5∙828 427 125 (or) z = 0∙171 572 875
But z = x²
x = √z
→ x = √(5∙828 427 125) (or) x = √(0∙171 572 875)
→ x = ± 2∙414 213 562 (or) x = ± 0∙585 786 437

Now check values for x in the original equation.

It will be seen that x = ± 2∙414 213 562
x² + 1/x² = 6
(+ 2∙414 213 562)² + 1/(+ 2∙414 213 562)² = 6
(5∙828 427 125...) + 1/(5∙828 427 125...) = 6
(5∙828 427 125...) + 0∙171 572 875... = 6
6 = 6 Values for x confirmed.
The square root of a minus number is positive,
so - 2∙414 213 562 is also a value for x.

(x - 1/x) =
(+ 2∙414 213 562...) - 1/(+ 2∙414 213 562...) =
(+ 2∙414 213 562...) - 0∙414 213 562 = 2
(x - 1/x) = 2

(x - 1/x) =
(- 2∙414 213 562...) - 1/(- 2∙414 213 562...) =
(- 2∙414 213 562...) + 0∙414 213 562 = - 2
(x - 1/x) = - 2

(x - 1/x) = ± 2

2006-09-25 04:03:17 · answer #4 · answered by Brenmore 5 · 0 0

(x-1/x)^2=(x^2+1/x^2)-2*x*1/x
=6-2*1
=4
hence,
x-1/x=4^1/2
=+2 or -2

2006-09-25 06:12:20 · answer #5 · answered by raj 1 · 0 0

3.2360684 or -1.2360684

(x^2)+1/(x^2)=6
(x^2)+1=6(x^2)
1=5(x^2)
x^2=1/5
x= (1/5)^((2)^(-1)) =+0.4472135 or -0.4472135

when x=+0.4472135
x-1/x=0.4472135-1/0.4472135
= -(0.5527865/0.4472135)
= -(1.2360684)

when x=-0.4472135
x-1/x= (-(0.4472135+1)) / (-(0.4472135))
= -(1.4472135) / (- 0.4472135)
= 3.2360684

2006-09-25 02:07:38 · answer #6 · answered by geniusboy 2 · 0 1

x^2 = 6 - x^-2
x = (6 - x^-2)^(1/2)
x - x^-1 = (6 - x^-2)^(1/2) - (6 - x^-2)^(-1/2)
[(6 - x^-2)^(1/2)/(6 - x^-2)^(1/2)] = 1
[(6 - x^-2)^(1/2)/(6 - x^-2)^(1/2)][(6 - x^-2)^(1/2)] - 1/[(6 - x^-2)^(1/2)]
= (6 - x^-2)/[(6 - x^-2)^(1/2)] - 1/[(6 - x^-2)^(1/2)]
= (6 - x^-2 - 1)/[(6-x^-2)^(1/2)]
= (5 - x^-2)/[(6-x^-2)^(1/2)]

2006-09-25 02:05:59 · answer #7 · answered by johnny m 2 · 0 1

(x ^2) + 1/(x ^2) =6

Re-arranging

x^4-6x^2+1=0

let z=x^2

z^2-6z+1=0

Solve using quadratic formula

z= (6+32^.5) /2 or (6-32^.5) /2

since z=x^2

x= z^.5

x= ((6+32^.5) /2)^.5 or ((6-32^.5) /2).5

substitute this into

(x - 1/x)

and u will get ur answer

which is 0.585786

2006-09-25 01:44:33 · answer #8 · answered by Anonymous · 0 1

(x-1/x)^2=(x^2)+1/(x^2)-2(standard formula)
substituting the above value in this formula,
(x-1/x)^2=6-2=4;
(x-1/x)=sq.root of 4=2;
so,(x-1/x)=2

2006-09-25 02:02:40 · answer #9 · answered by Anonymous · 1 0

(x - 1/x)^2 =
... = x^2 - 2 + 1/x^2
... = 6 - 2 = 4

so the answer is -2 or +2.

2006-09-25 02:30:06 · answer #10 · answered by dutch_prof 4 · 1 0

fedest.com, questions and answers