cot 2A + tan A
= cos 2A/sin 2A + sin A/cos A
= (cos 2A cos A + sin 2A sin A) / sin 2A cos A
Using the compound angle formulae,
we know that cos (2A - A ) = cos 2A cos A + sin 2A sin A...
therefore,
= cos (2A - A) / sin 2A cos A
= cos A / sin 2A cos A
= 1/ sin 2A
= cosec 2A ( proven)
Good luck !!!
2006-09-18 03:08:01
·
answer #1
·
answered by Nirmal87 2
·
0⤊
0⤋
If I remember my trig equations correctly, this equation is true for all real numbers A.
cot 2A = cos 2A / sin 2A = (cos^2 A - sin^2 A)/(2 sin A cos A)
csc 2A = 1/sin 2A = 1/(2 sin A cos A)
So, rewritten in terms of sin A and cos A, the equation becomes
(cos^2 A - sin^2 A)/(2 sin A cos A) + (sin A / cos A) = 1/(2 sin A cos A)
Multiplying the entire equation by 2 sin A cos A:
(cos^2 A - sin^2 A) + 2 sin^2 A = 1
cos^2 A + sin^2 A = 1
Which is true for all real A.
2006-09-18 09:50:03
·
answer #2
·
answered by Chris S 5
·
0⤊
0⤋
tan A= cosec2A-cot2A
= (1-cos2A)/sin2A = 2sin^2 A/(2sinAcosA)
= sinA/cosA = tanA
hence, solns r infinite, A {- R ( A belongs to set f real nos)
A cn b nething
2006-09-19 02:03:25
·
answer #3
·
answered by cosmic_ashim 2
·
0⤊
0⤋
giben cos 2a/sin 2a + sin a/cos a = 1/ sin 2a
multiply by sin 2a
cos 2a + sin a sin 2a/cos a = 1
or cos 2a + 2 sin^ a = 1 as sin 2a/cos a = 2 sin a
or cos 2a = 1- 2 sin ^a = 1- sin^a - sin^a = cos^a - sin^a
which is true
because cos(a+b) = cos a cos b - sina sin b
put b = a
cos 2a = cos^a - sin ^a
this is true for all a so proved
2006-09-18 09:53:38
·
answer #4
·
answered by Mein Hoon Na 7
·
0⤊
0⤋
Solved using numerical technique:
newton ralphson method to get
A=1.03064516 radians
2006-09-19 23:53:59
·
answer #5
·
answered by Hemant 2
·
0⤊
0⤋
Your question must begin with prove that...
or show that not " can you solve"
instead of the word "solve",
you should use "show"
Because this an identy not equation to solve.
LHS=cos 2A/sin2A +sinA/cosA
=(cos2AcosA+sin2A sinA)/(cosA . sin2A)
=cos(2A-A)/(cosAsin2A)
=cosA/(cosA sin2A)
=1/sin2A
RHS=1/sin2A
LHS=RHS
So, the given identity is true.
2006-09-18 10:49:02
·
answer #6
·
answered by iyiogrenci 6
·
0⤊
0⤋
If your Question is cot2A+tan2A=Cosec2A then i can answer.
2006-09-18 12:06:12
·
answer #7
·
answered by vanraj 1
·
0⤊
0⤋
I think the question is:
Cot2A + Tan 2A = Cosec 2A.
2006-09-18 09:44:58
·
answer #8
·
answered by vani3624 3
·
0⤊
1⤋
cot(2A) + tanA = csc(2A)
Assuming you don't mean cot(A)^2 + tanA = csc(A)^2
this is the same as saying
(1/(tan(2A))) + tanA = 1/(sin(2A))
becomes
(1 + (tan(A) * tan(2A))/(tan(2A))) = 1/(sin(2A))
tan(2A) = (2tanA)/(1 - tan(A)^2)
(1 + (tan(A) * ((2tanA)/(1 - tan(A)^2)))/((2tan(A))/(1 - tan(A)^2))
(((1 - tan(A)^2) + 2tan(A)^2)/(1 - tan(A)^2)) / ((2tanA)/(1 - tan(A)^2))
((1 - tan(A)^2 + 2tan(A)^2)/(1 - tan(A)^2) / ((2tan(A))/(1 - tan(A)^2))
(1 + tan(A)^2)/(1 - tan(A)^2) / ((2tanA)/(1 - tan(A)^2))
(1 + tan(A)^2)/(1 - tan(A)^2) * ((1 - tan(A)^2)/(2tanA))
((1 + tan(A)^2)(1 - tan(A)^2))/((2tanA)(1 - tan(A)^2)
(1 + tan(A)^2)/(2tanA)
tan(A)^2 + 1 = sec(A)^2
sec(A)^2 = 1/(cos(A)^2)
(1/(cos(A)^2)) / (2(sinA/cosA))
(1/(cos(A)^2)) / ((2sinA)/(cosA))
(1/(cos(A)^2)) * ((cosA)/(2sinA))
(cosA)/(2sinAcosA^2)
1/(2sinAcosA)
1/(2sinAcosA) = 1/(sin(2A))
1/(sin(2A)) = csc(2A)
so
cot(2A) + tanA = csc(2A)
2006-09-18 13:24:58
·
answer #9
·
answered by Sherman81 6
·
0⤊
0⤋
Yes, now the real question is can you?
2006-09-18 09:47:37
·
answer #10
·
answered by Anonymous
·
0⤊
1⤋