in order to determine the effect of any cause, one needs a comparative measurement to determine what changes, if any, occurred and the degree to which the changes occurred with the introduction of the variable. Therefore most experiements include a test group and a control group. After the introduction of the variable into the equation the results are measured against the control group to determine what affect occurred.
2006-09-16 08:28:30
·
answer #1
·
answered by Anonymous
·
0⤊
0⤋
A control is a person/thing that is not experimented on so that the differences in the experimented and non-experimented could be observed by the experimenter.
2006-09-16 15:29:37
·
answer #2
·
answered by Chris J 6
·
0⤊
0⤋
a control as i was taught way back is used as a means of effectively monitoring the main experiment, in the control experiment some factors are left constant while they are altered in the main experiment so as to prove that the variable factors have actually affected the main experiment
2006-09-16 15:24:49
·
answer #3
·
answered by rickybellanco 2
·
0⤊
0⤋
Experimental controls are used in scientific experiments to prevent factors other than those being studied from affecting the outcome.
Controls are needed to eliminate alternate explanations of experimental results. For example, suppose a researcher feeds an experimental artificial sweetener to thirty laboratory rats and observes that eight of them subsequently die of dehydration. The underlying cause of death could be the sweetener itself or something unrelated. Perhaps the rats were simply not supplied with enough water; or the water was contaminated and undrinkable; or the rats were under some psychological or physiological stress that caused them not to drink enough; or a disease dehydrated them; or their cage was kept too hot. Eliminating each of these possible explanations individually would be time-consuming and difficult. Instead, the researcher can use an experimental control, separating the rats into two groups: one group that receives the sweetener and one that doesn't. The two groups are kept in otherwise identical conditions, and both groups are observed in the same ways. Now, any difference in morbidity between the two groups can be ascribed to the sweetener itself--and no other factor--with much greater confidence.
In this example, and in medical trials generally, the experimental control comes in the form of a control group, a group that is observed under ordinary conditions while another group is subjected to the treatment (or other factor) being studied. The data from the control group is the baseline against which all other experimental results must be measured.
In other cases, an experimental control is used to prevent the effects of one variable from being drowned out by the known, greater effects of other variables. For example, suppose a program that gives out free books to children in subway stations wants to measure the effect of the program on standardized test scores. However, the researchers understand that many other factors probably have a much greater effect on standardized test scores than the free books: household income, for example, and the extent of parents' education. In scientific parlance, these are called confounding variables. In this case, the researchers can either use a control group or use statistical techniques to control for the other variables.
Controlled experiments:
Many hypotheses in sciences such as physics can establish causality by noting that, until some phenomenon occurs, nothing happens; then when the phenomenon occurs, a second phenomenon is observed. But often in science, this situation is difficult to obtain.
For example, in the old joke, someone claims that they are snapping their fingers "to keep the tigers away"; and justifies this behavior by saying "see - its working!" While this "experiment" does not falsify the hypothesis "snapping fingers keeps the tigers away", it does not really support the hypothesis - not snapping your fingers keeps the tigers away as well.
To demonstrate a cause and effect hypothesis, an experiment must often show that, for example, a phenomenon occurs after a certain treatment is given to a subject, and that the phenomenon does not occur in the absence of the treatment. (See Baconian method.)
Standard curveA controlled experiment generally compares the results obtained from an experimental sample against a control sample, which is practically identical to the experimental sample except for the one aspect whose effect is being tested. A good example would be a drug trial. The sample or group receiving the drug would be the experimental one; and the one receiving the placebo would be the control one. In many laboratory experiments it is good practice to have several replicate samples for the test being performed and have both a positive control and a negative control. The results from replicate samples can often be averaged, or if one of the replicates is obviously inconsistent with the results from the other samples, it can be discarded as being the result of an experimental error (some step of the test procedure may have been mistakenly omitted for that sample). Most often, tests are done in duplicate or triplicate. A positive control is a procedure that is very similar to the actual experimental test but which is known from previous experience to give a positive result. A negative control is known to give a negative result. The positive control confirms that the basic conditions of the experiment were able to produce a positive result, even if none of the actual experimental samples produce a positive result. The negative control demonstrates the base-line result obtained when a test does not produce a measurable positive result; often the value of the negative control is treated as a "background" value to be subtracted from the test sample results. Sometimes the positive control takes the form of a standard curve.
An example that is often used in teaching laboratories is a controlled protein assay. Students might be given a fluid sample containing an unknown (to the student) amount of protein. It is their job to correctly perform a controlled experiment in which they determine the concentration of protein in fluid sample (usually called the "unknown sample"). The teaching lab would be equipped with a protein standard solution with a known protein concentration. Students could make several positive control samples containing various dilutions of the protein standard. Negative control samples would contain all of the reagents for the protein assay but no protein. In this example, all samples are performed in duplicate. The assay is a colorimetric assay in which a spectrophotometer can measure the amount of protein in samples by detecting a colored complex formed by the interaction of protein molecules and molecules of an added dye. In the illustration, the results for the diluted test samples can be compared to the results of the standard curve (the blue line in the illustration) in order to determine an estimate of the amount of protein in the unknown sample.
Controlled experiments can be performed when it is difficult to exactly control all the conditions in an experiment. In this case, the experiment begins by creating two or more sample groups that are probabilistically equivalent, which means that measurements of traits should be similar among the groups and that the groups should respond in the same manner if given the same treatment. This equivalency is determined by statistical methods that take into account the amount of variation between individuals and the number of individuals in each group. In fields such as microbiology and chemistry, where there is very little variation between individuals and the group size is easily in the millions, these statistical methods are often bypassed and simply splitting a solution into equal parts is assumed to produce identical sample groups.
Once equivalent groups have been formed, the experimenter tries to treat them identically except for the one variable that he or she wishes to isolate. Human experimentation requires special safeguards against outside variables such as the placebo effect. Such experiments are generally double blind, meaning that neither the volunteer nor the researcher knows which individuals are in the control group or the experimental group until after all of the data has been collected. This ensures that any effects on the volunteer are due to the treatment itself and are not a response to the knowledge that he is being treated.
In human experiments, a subject (person) may be given a stimulus to which he or she should respond. The goal of the experiment is to measure the response to a given stimulus.
2006-09-16 15:33:07
·
answer #4
·
answered by Anonymous
·
0⤊
0⤋