English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

Can someone give me the demonstration that leads to the quadratic equation? (or where to find it)

2006-09-15 21:30:55 · 5 answers · asked by just "JR" 7 in Science & Mathematics Mathematics

5 answers

basically you require a proof.

multiply by 4a to make 1st term a whole square and avoid a fraction
(2ax)^2 +4abx + 4ac =0
add b^2 -b^2 to make 1st part square
(2ax)^2+4abx +b^2 - b^2 +4ac =0
or (2ax+b)^2 = b^2-4ac
(2ax+b) = (+/-)sqrt(b^2-4ac)
=> 2ax = -b (+/-) sqrt(b^2-4ac)
=> x = (-b(+/-) sqrt(b^2-4ac))/2a

2006-09-15 21:38:05 · answer #1 · answered by Mein Hoon Na 7 · 0 0

For all real numbers a, b, and c, a ≠ 0:

ax² + bx + c = 0

Let x = y + n

a(y + n)² + b(y + n) + c = 0

a(y² + 2ny + n²) + by + bn + c = 0

ay² + 2any + an² + by + bn + c = 0

ay² + (2an + b)y + an² + bn + c = 0

Let 2an + b = 0 or n = -b/(2a)

ay² + a(-b/2a)² + b(-b/2a) + c = 0

ay² + a(b²/4a²) - b²/(2a) + c = 0

ay² + b²/(4a) - b²/(2a) + c = 0

ay² + (b²/a)(1/4 - 1/2) + c = 0

ay² - b²/(4a) + 4ac/4a = 0

ay² - (1/4a)(b² - 4ac) = 0

y² - (1/4a²)(b² - 4ac) = 0

[y + (1/2a)√(b² - 4ac)] [y - (1/2a)√(b² - 4ac)]= 0

y = x - n = x - (-b/(2a)) = x + b/(2a)

[x + b/(2a) + (1/2a)√(b² - 4ac)] [x + b/(2a) - (1/2a)√(b² - 4ac)]= 0

Therefore:

x = [-b + √(b² - 4ac)]/(2a) or x = [-b - √(b² - 4ac)]/(2a)

2006-09-16 05:20:09 · answer #2 · answered by Jerry M 3 · 0 0

ax^2+bx+c=0

ax^2+bx= -c

x^2 + b/a x = -c/a

x^2 + 2 ( b/2a ) x + ( b/2a)^2 = ( b/2a )^2 - c/a

( x + b/2a) ^2 = b^2-4ac/4a^2

x+ b/2a = + or - square root of b^2-4ac/2a

so x= {-b [+ or -] square root of b^2-4ac }/2a

2006-09-16 04:52:19 · answer #3 · answered by free aung san su kyi forthwith 2 · 0 0

http://www.sosmath.com/algebra/quadraticeq/quadraformula/quadraformula.html

2006-09-16 04:34:43 · answer #4 · answered by just curious 4 · 0 0

I dont know

2006-09-16 09:00:06 · answer #5 · answered by Atila a 4 · 0 1

fedest.com, questions and answers