English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

why does

1+3+5+7+11+...+(2k-1)
=k^2 ?

2006-09-07 13:13:35 · 2 answers · asked by Anonymous in Science & Mathematics Mathematics

2 answers

Well you have:
(x=1, k)∑2x-1
By linearity of summation:
2*(x=1, k)∑x - (x=1, k)∑1
Simplifying:
2*(k(k+1))/2 - k
k(k+1) - k
k²+k-k

2006-09-07 13:18:55 · answer #1 · answered by Pascal 7 · 0 0

1+3+5+...+(2k-1) = Sum(i=1, i=k, (2k-1))
1+3+5+...+(2k-1) = Sum(i=1, i=k, 2k) - Sum(i=1, i=k, 1)
1+3+5+...+(2k-1) = 2*Sum(i=1, i=k, k) - Sum(i=1, i=k, 1)
1+3+5+...+(2k-1) = 2*k*(k+1)/2 - k
1+3+5+...+(2k-1) = k^2 + k - k
1+3+5+...+(2k-1) = k^2

2006-09-07 13:22:23 · answer #2 · answered by karlterzaghi 2 · 0 0

fedest.com, questions and answers