English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2006-09-05 16:14:25 · 3 answers · asked by nc.bowerman@sbcglobal.net 1 in Science & Mathematics Mathematics

3 answers

expand the (1-cosx)^2 to get
1 -2cosx + (cosx)^2
then you have
sqrt( a^2(1 - 2cosx + (cosx)^2 + (sinx) ^2))

Use the trig identity (cosx)^2 + (sinx)^2 = 1
sqrt( a^2 ( 2 - 2cosx))

factor out a^2 and 4, you'll see why 4 soon
assuming a is positive.
2a * sqrt ( (1-cosx)/2 )

now you can use another trig identity
(1-cosx)/2 = (sin (x/2))2

2a * sqrt ( (sin(x/2))^2)
now you have a square root of a square

2a * | sin(x/2) |

I'll let you finish it from there :-)

2006-09-05 16:41:11 · answer #1 · answered by Demiurge42 7 · 0 0

the integral
={a^2[1+cos^2x-2cosx+sin^2x]}^1/2dx
I=(a^2-a^2cox)^1/2dx
=[a^2(1-cosx)]^1/2dx
=[a^2*2sin^2x/2)]^1/2dx
rt2a*(-2cos(x/2)
=-2rt2acos(x/2)
now apply the limits

2006-09-05 23:26:02 · answer #2 · answered by raj 7 · 0 0

http://integrals.wolfram.com/index.jsp

2006-09-05 23:22:50 · answer #3 · answered by shyvurboie 4 · 0 0

fedest.com, questions and answers