English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

This is an inverse function in a beginnning college calculus class, not too hard just dont know how to find the inverse of this particular problem. <<<<>>>>nothing just to get points

2006-09-03 15:19:52 · 3 answers · asked by hardrocker210 1 in Science & Mathematics Mathematics

3 answers

Let f^-1(x)=y, the inverse function y is definite by this equation:
x=8+2y^2 + tan(Pi(y) \ 2),
in the point x=8 for y(8) you have:
8=8+2y^2 + tan(Pi(y) \ 2) ->
2y^2 + tan(Pi(y) \ 2)=0 ->
y=0
Thus: f^-1(8)=0

2006-09-03 21:02:52 · answer #1 · answered by sav 2 · 0 1

well f(x1) = 8 +2x^2 so f^-1 (x) = f(y) = 8+ 2y^2
& f(x2) = tan(Pi(x) \ 2 so f^-1(x2) or Arctan (x) = tan (∏y)/ 2 .

f^-1(x) Or f(y) = 8+ 2y^2 + tan (∏y)/ 2

{ rememebr if we have tan(x) so Domain = ( - ∏/2 , + ∏/2)
& R = ( -∞,+ ∞) .But if we have y = arctan(x) <=> x = tan(y) , - ∏/2 < y < + ∏/2 }

f^-1(8) = 8+ 2(y)^2 + tan (∏(y))/ 2
{ as f^-1(x) = y and x = 8 so ;}
8 = 8+ 2(y)^2 + tan (∏(y))/ 2
8+ 2(y)^2 + tan (∏(y))/ 2 = 8
2(y)^2 + tan (∏(y))/ 2 = 8-8
2y^2 + tan (∏(y))/ 2 = 0
factor ' y '
y ( 2y + tan(∏/2) ) = 0
now
y = 0
Or
2y + tan(∏/2) = 0; y = tan(∏/2) / 2 ;y = tan∏/ (2*2) ; y = tan∏/4
y = +1 .

so its our correct answer we are looking for.
Good luck and Good question.

2006-09-04 19:56:28 · answer #2 · answered by sweetie 5 · 0 0

1/136

2006-09-03 22:28:57 · answer #3 · answered by runlolarun 4 · 0 0

fedest.com, questions and answers