English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

please hep me

2006-08-28 05:19:43 · 6 answers · asked by iluvhipos 3 in Science & Mathematics Mathematics

6 answers

Well dear first you need to simplify ' Sin B '.

▪ sin (B) = 5 ((√2)) /( 5 (√3))
now you can remover ' 5 ' in this Fraction, the result is ;

▪ sin (B) = (√2) /(√3)

now we have;

▪ csc(B) = 1/sin (B)
▪ csc(B) = 1/ (√2) /(√3)
▪ csc(B) = (1/1)/ (√2) /(√3)
▪ csc(B) = (1* √3) / (1 *√2)
▪ csc(B) = ( √3) / (√2)

Good Luck.

2006-08-29 02:07:59 · answer #1 · answered by sweetie 5 · 1 0

csc B=reciprocal of sin B=5 sq.rt3/5 sq.rt2=sq.rt(3/2)

2006-08-28 14:27:04 · answer #2 · answered by raj 7 · 0 0

let us first simplify

5*sqrt{2} / (5*sqrt{3}) = sqrt{2/3}

so sin (b) = sqrt{2/3}

csc b = 1/(sin b)

so csc b = 1/ sqrt{2/3}

or sqrt{3/2}

2006-08-28 12:29:32 · answer #3 · answered by farrell_stu 4 · 0 0

Simplyfying by 5 :

sin B = sqrt2 /sqrt3 so abs(cos B) = 1 /sqrt3
because cos²B * sin² B = 1

csc B = 1/ sin B = sqrt3 / sqrt2

2006-08-28 12:24:56 · answer #4 · answered by fred 055 4 · 0 0

csc B = 1 / sin B

csc B = 1 / [5sqrt(2) / 5sqrt(3)]

=1 * [5sqrt(3) / 5sqrt(2)]

= [5sqrt(3) / 5sqrt(2)]

= sqrt(3) / sqrt(2)

= [sqrt(3) / sqrt(2)] * [sqrt(2) / sqrt(2)]

= [sqrt(3)sqrt(2) / sqrt(2)sqrt(2)]

= sqrt(6) / 2

2006-08-28 21:01:47 · answer #5 · answered by Anonymous · 0 0

sinB = (5sqrt(2)/5sqrt(3))
sinB = (sqrt(2))/(sqrt(3))

cscB = 1/sinB
cscB = 1/(sqrt(2)/sqrt(3))
cscB = (1/1)/(sqrt(2)/sqrt(3))
cscB = (1/1)*(sqrt(3)/sqrt(2))
cscB = (sqrt(3))/(sqrt(2))

cscB = (sqrtr(6))/2

2006-08-28 20:41:19 · answer #6 · answered by Sherman81 6 · 0 0

fedest.com, questions and answers