Well dear first you need to simplify ' Sin B '.
▪ sin (B) = 5 ((√2)) /( 5 (√3))
now you can remover ' 5 ' in this Fraction, the result is ;
▪ sin (B) = (√2) /(√3)
now we have;
▪ csc(B) = 1/sin (B)
▪ csc(B) = 1/ (√2) /(√3)
▪ csc(B) = (1/1)/ (√2) /(√3)
▪ csc(B) = (1* √3) / (1 *√2)
▪ csc(B) = ( √3) / (√2)
Good Luck.
2006-08-29 02:07:59
·
answer #1
·
answered by sweetie 5
·
1⤊
0⤋
csc B=reciprocal of sin B=5 sq.rt3/5 sq.rt2=sq.rt(3/2)
2006-08-28 14:27:04
·
answer #2
·
answered by raj 7
·
0⤊
0⤋
let us first simplify
5*sqrt{2} / (5*sqrt{3}) = sqrt{2/3}
so sin (b) = sqrt{2/3}
csc b = 1/(sin b)
so csc b = 1/ sqrt{2/3}
or sqrt{3/2}
2006-08-28 12:29:32
·
answer #3
·
answered by farrell_stu 4
·
0⤊
0⤋
Simplyfying by 5 :
sin B = sqrt2 /sqrt3 so abs(cos B) = 1 /sqrt3
because cos²B * sin² B = 1
csc B = 1/ sin B = sqrt3 / sqrt2
2006-08-28 12:24:56
·
answer #4
·
answered by fred 055 4
·
0⤊
0⤋
csc B = 1 / sin B
csc B = 1 / [5sqrt(2) / 5sqrt(3)]
=1 * [5sqrt(3) / 5sqrt(2)]
= [5sqrt(3) / 5sqrt(2)]
= sqrt(3) / sqrt(2)
= [sqrt(3) / sqrt(2)] * [sqrt(2) / sqrt(2)]
= [sqrt(3)sqrt(2) / sqrt(2)sqrt(2)]
= sqrt(6) / 2
2006-08-28 21:01:47
·
answer #5
·
answered by Anonymous
·
0⤊
0⤋
sinB = (5sqrt(2)/5sqrt(3))
sinB = (sqrt(2))/(sqrt(3))
cscB = 1/sinB
cscB = 1/(sqrt(2)/sqrt(3))
cscB = (1/1)/(sqrt(2)/sqrt(3))
cscB = (1/1)*(sqrt(3)/sqrt(2))
cscB = (sqrt(3))/(sqrt(2))
cscB = (sqrtr(6))/2
2006-08-28 20:41:19
·
answer #6
·
answered by Sherman81 6
·
0⤊
0⤋