English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories
2

2006-08-27 10:42:57 · 8 answers · asked by kev 2 in Entertainment & Music Television

8 answers

Is P equal to NP?

In a 2002 poll of 100 researchers, 61 believed the answer is no, 9 believed the answer is yes, 22 were unsure, and 8 believed the question may be independent of the currently accepted axioms, and so impossible to prove or disprove.[1] The Clay Mathematics Institute has offered a USD 1,000,000 prize for a correct solution.

An important role in this discussion is played by the set of NP-complete problems (or NPC) which can be loosely described as the hardest problems in NP and therefore they are the least likely to be in P. More precisely, any problem in NP, through some efficient (takes at most a polynomial-bounded number of steps) transformation, can be expressed as a problem in NP-complete. Therefore if one finds an efficient (again, polynomial-bounded) solution to any NP-complete problem, then every problem in NP can be solved efficiently and therefore must be in P, hence proving P = NP. (See NP-complete for the exact definition.) Most theoretical computer scientists currently believe that the relationship among the classes P, NP, and NPC is as shown in the picture, with the P and NPC classes disjoint.

In essence, the P = NP question asks: if positive solutions to a YES/NO problem can be verified quickly, can the answers also be computed quickly? Here is an example to get a feeling for the question. Given a set of integers, does any subset of them sum to 0? For instance, does any subset of the set {-2, -3, 8, 15, -10} add up to 0? The answer is YES, though it may take a little while to find a subset that does - and if the set was larger, it might take a very long time to find a subset that does. On the other hand, if someone claims that the answer is "YES, because {-2, -3, -10, 15} add up to zero", then we can quickly check that with a few additions. Verifying that the subset adds up to zero is much faster than finding the subset in the first place. The information needed to verify a positive answer is also called a certificate. So we conclude that given the right certificates, positive answers to our problem can be verified quickly (i.e. in polynomial time) and that's why this problem is in NP.

The restriction to YES/NO problems doesn't really make a difference; even if we allow more complicated answers, the resulting problem (whether FP = FNP) is equivalent.

2006-08-28 01:32:46 · answer #1 · answered by Anonymous · 0 0

Helium has an equal number of protons and neutrons in the nucleus, so I am guessing Helium with an extra proton. HE+

2006-08-27 19:45:44 · answer #2 · answered by Trader 3 · 1 0

Need more info

2006-08-27 17:45:56 · answer #3 · answered by Anonymous · 0 0

p = proton
N= neutron

2006-08-27 17:47:27 · answer #4 · answered by kemo_jugo 1 · 0 0

n=p/n. divde n to both sides

2006-08-27 17:47:46 · answer #5 · answered by oreowood14 2 · 1 0

its picture in picture

2006-08-27 17:47:52 · answer #6 · answered by rampdogg2000 2 · 0 0

what

2006-08-27 17:44:52 · answer #7 · answered by mickel230 1 · 0 0

i know what is athat???

2006-08-27 17:45:30 · answer #8 · answered by Anonymous · 0 0

fedest.com, questions and answers