The origins of algebra can be traced to the ancient Babylonians, who developed an advanced arithmetical system with which they were able to do calculations in an algebraic fashion. With the use of this system they were able to apply formulate and calculate solutions for unknown values for a class of problems typically solved today by using linear equations, quadratic equations, and indeterminate linear equations. By contrast, most Egyptians of this era, and most Indian, Greek and Chinese mathematicians in the first millennium BC, usually solved such equations by geometric methods, such as those described in the Moscow and Rhind Mathematical Papyri, Sulba Sutras, Euclid's Elements, and The Nine Chapters on the Mathematical Art. The geometric work of the Greeks, typified in the Elements, provided the framework for generalizing formulae beyond the solution of particular problems into more general systems of stating and solving equations.
Indian mathematicians proceeded to write treatises on algebraic means of solving equations from the end of the first millennium BC, followed by Hellenistic mathematicians from the early first millennium AD. Important algebraic works from this general era include the Bakhshali Manuscript, the works of Hero of Alexandria, the Arithmetica of Diophantus, the Aryabhatiya of Aryabhata, and the Brahma Sputa Siddhanta of Brahmagupta.
The word "algebra" is named after the Arabic word "al-jabr" from the title of the book al-Kitāb al-muḫtaṣar fī ḥisāb al-ğabr wa-l-muqābala, meaning The book of Summary Concerning Calculating by Transposition and Reduction, a book written by the Persian Muslim mathematician Muḥammad ibn Mūsā al-Ḵwārizmī in 820. The word al-jabr means "reunion". Al-Khwarizmi is often considered the "father of algebra" (though that title is also given to Diophantus), as much of his works on reduction are still in use today. Another Persian mathematician Omar Khayyam developed algebraic geometry and found the general geometric solution of the cubic equation. The Indian mathematicians Mahavira and Bhaskara, and the Chinese mathematician Zhu Shijie, solved various cubic, quartic, quintic and higher-order polynomial equations.
Another key event in the further development of algebra was the general algebraic solution of the cubic and quartic equations, developed in the mid-16th century. The idea of a determinant was developed by Japanese mathematician Kowa Seki in the 17th century, followed by Gottfried Leibniz ten years later, for the purpose of solving systems of simultaneous linear equations using matrices. Gabriel Cramer also did some work on matrices and determinants in the 18th century. Abstract algebra was developed in the 19th century, initially focusing on what is now called Galois theory, and on constructibility issues.
The stages of the development of symbolic algebra are roughly as follows:
Rhetorical algebra, which was developed by the Babylonians and remained dominant up to the 16th century;
Geometric constructive algebra, which was emphasised by the Vedic Indian and classical Greek mathematicians;
Syncopated algebra, as developed by Diophantus and in the Bakhshali Manuscript; and
Symbolic algebra, which sees its culmination in the work of Leibniz.
Cover of the 1621 edition of Diophantus' Arithmetica, translated into Latin by Claude Gaspard Bachet de Méziriac.A timeline of key algebraic developments are as follows:
Circa 1800 BC: The Old Babylonian Strassburg tablet seeks the solution of a quadratic elliptic equation.
Circa 1600 BC: The Plimpton 322 tablet gives a table of Pythagorean triples in Babylonian Cuneiform script.
Circa 800 BC: Indian mathematician Baudhayana, in his Baudhayana Sulba Sutra, discovers Pythagorean triples algebraically, finds geometric solutions of linear equations and quadratic equations of the forms ax2 = c and ax2 + bx = c, and finds two sets of positive integral solutions to a set of simultaneous Diophantine equations.
Circa 600 BC: Indian mathematician Apastamba, in his Apastamba Sulba Sutra, solves the general linear equation and uses simultaneous Diophantine equations with up to five unknowns.
Circa 300 BC: In Book II of his Elements, Euclid gives a geometric construction with Euclidean tools for the solution of the quadratic equation for positive real roots. The construction is due to the Pythagorean School of geometry.
Circa 300 BC: A geometric construction for the solution of the cubic is sought (doubling the cube problem). It is now well known that the general cubic has no such solution using Euclidean tools.
Circa 100 BC: Algebraic equations are treated in the Chinese mathematics book Jiuzhang suanshu (The Nine Chapters on the Mathematical Art), which contains solutions of linear equations solved using the rule of double false position, geometric solutions of quadratic equations, and the solutions of matrices equivalent to the modern method, to solve systems of simultaneous linear equations.
Circa 100 BC: The Bakhshali Manuscript written in ancient India uses a form of algebraic notation using letters of the alphabet and other signs, and contains cubic and quartic equations, algebraic solutions of linear equations with up to five unknowns, the general algebraic formula for the quadratic equation, and solutions of indeterminate quadratic equations and simultaneous equations.
Circa 150 AD: Hellenized Egyptian mathematician Hero of Alexandria, treats algebraic equations in three volumes of mathematics.
Circa 200: Hellenized Babylonian mathematician Diophantus, who lived in Egypt and is often considered the "father of algebra", writes his famous Arithmetica, a work featuring solutions of algebraic equations and on the theory of numbers.
499: Indian mathematician Aryabhata, in his treatise Aryabhatiya, obtains whole-number solutions to linear equations by a method equivalent to the modern one, describes the general integral solution of the indeterminate linear equation, gives integral solutions of simultaneous indeterminate linear equations, and describes a differential equation.
Circa 625: Chinese mathematician Wang Xiaotong finds numerical solutions of cubic equations.
628: Indian mathematician Brahmagupta, in his treatise Brahma Sputa Siddhanta, invents the chakravala method of solving indeterminate quadratic equations, including Pell's equation, and gives rules for solving linear and quadratic equations. He discovers that quadratic equations have two roots, including both negative as well as irrational roots.
820: The word algebra is derived from operations described in the treatise written by the Persian mathematician Muḥammad ibn Mūsā al-Ḵwārizmī titled Al-Kitab al-Jabr wa-l-Muqabala (meaning "The Compendious Book on Calculation by Completion and Balancing") on the systematic solution of linear and quadratic equations. Al-Khwarizmi is often considered as the "father of algebra", much of whose works on reduction was included in the book and added to many methods we have in algebra now.
Circa 850: Persian mathematician al-Mahani conceived the idea of reducing geometrical problems such as duplicating the cube to problems in algebra.
Circa 850: Indian mathematician Mahavira solves various quadratic, cubic, quartic, quintic and higher-order equations, as well as indeterminate quadratic, cubic and higher-order equations.
Circa 990: Persian Abu Bakr al-Karaji, in his treatise al-Fakhri, further develops algebra by extending Al-Khwarizmi's methodology to incorporate integral powers and integral roots of unknown quantities. He replaces geometrical operations of algebra with modern arithmetical operations, and defines the monomials x, x2, x3, ... and 1/x, 1/x2, 1/x3, ... and gives rules for the products of any two of these.
Circa 1050: Chinese mathematician Jia Xian finds numerical solutions of polynomial equations.
1072: Persian mathematician Omar Khayyam develops algebraic geometry and, in the Treatise on Demonstration of Problems of Algebra, gives a complete classification of cubic equations with general geometric solutions found by means of intersecting conic sections.
1114: Indian mathematician Bhaskara, in his Bijaganita (Algebra), recognizes that a positive number has both a positive and negative square root, and solves quadratic equations with more than one unknown, various cubic, quartic and higher-order polynomial equations, Pell's equation, the general indeterminate quadratic equation, as well as indeterminate cubic, quartic and higher-order equations.
1150: Bhaskara, in his Siddhanta Shiromani, solves differential equations.
1202: Algebra is introduced to Europe largely through the work of Leonardo Fibonacci of Pisa in his work Liber Abaci.
Circa 1300: Chinese mathematician Zhu Shijie deals with polynomial algebra, solves quadratic equations, simultaneous equations and equations with up to four unknowns, and numerically solves some quartic, quintic and higher-order polynomial equations.
Circa 1400: Indian mathematician Madhava of Sangamagramma finds the solution of transcendental equations by iteration, iterative methods for the solution of non-linear equations, and solutions of differential equations.
1515: Scipione del Ferro solves a cubic such that the quadratic term is missing.
1535: Nicolo Fontana Tartaglia solves a cubic such that the linear term is missing.
1545: Girolamo Cardano publishes Ars magna -The great art which gives solutions for a variety of cubics as well as Ludovico Ferrari's solution of a special quartic equation.
1572: Rafael Bombelli recognizes the complex roots of the cubic and improves current notation.
1591: Francois Viete develops improved symbolic notation for various powers of an unknown and uses vowels for unknowns and consonants for constants in In artem analyticam isagoge.
1631: Thomas Harriot in a posthumus publication uses exponential notation and is the first to use symbols to indicate "less than" and "greater than".
1682: Gottfried Wilhelm Leibniz develops his notion of symbolic manipulation with formal rules which he calls characteristica generalis.
1683: Japanese mathematician Kowa Seki, in his Method of solving the dissimulated problems, discovers the determinant, discriminant, and Bernoulli numbers.
1685: Kowa Seki solves the general cubic equation, as well as some quartic and quintic equations.
1693: Leibniz solves systems of simultaneous linear equations using matrices and determinants.
1750: Gabriel Cramer, in his treatise Introduction to the analysis of algebraic curves, states Cramer's rule and studies algebraic curves, matrices and determinants.
1830: Galois theory is developed by Évariste Galois in his work on abstract algebra.
2006-08-13 17:25:39
·
answer #4
·
answered by myllur 4
·
0⤊
0⤋