6x squared+23x+9cm=area
just use the distribution properety- (3x*2x)+(4*2x)+(5*3x)+4*5
10x+18cm=perimeter
multiply each side by 2 and add:
6x+8+4x+10
2006-08-03 11:38:43
·
answer #1
·
answered by laughablebunny 3
·
1⤊
0⤋
Given your info, we're not going to get a number, we'll get an expression that represents the two answers so here goes...
AREA (3x+4)(2x+5) = 6x^2 + 23x + 20 cm^2
PERIMETER 3x+4 + 3x+ 4 + 2x+ 5 + 2x + 5= 10x +18 cm
2006-08-03 19:41:09
·
answer #2
·
answered by MollyMAM 6
·
0⤊
0⤋
Perimeter = 2*[3x+4 + 2x + 5] = 2*[5x+9]
= 10x+18
Area= (3x+4)*(2x+5)=6x^2 + 23x + 20
2006-08-03 20:09:37
·
answer #3
·
answered by Anonymous
·
0⤊
0⤋
Area: l x w
(3x + 4)(2x + 5) = 6x^2 + 15x + 8x + 20 cm^2
Perimeter: 2l + 2w
2(3x+4) + 2(2x+5) = (6x + 8) + (4x + 10) = 10x + 18 cm
If they give you an x value, you can actually give a real number.
2006-08-03 18:40:38
·
answer #4
·
answered by Anonymous
·
0⤊
0⤋
A = (3x + 4)(2x + 5)
A = 6x^2 + 15x + 8x + 20
A = 6x^2 + 23x + 20
P = 2((3x + 4) + (2x + 5))
P = 2(3x + 4 + 2x + 5)
P = 2(5x + 9)
P = 10x + 18
2006-08-03 21:23:10
·
answer #5
·
answered by Sherman81 6
·
0⤊
0⤋
The area formula
A= L x W
A + (2x + 5)(3x + 4)= 6x² + 15x + 8x + 20
A= 6x² + 23x + 20 cm
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Perimeter formula
P = 2L + 2 W
P = 2(2x + 5) + 2(3x + 4)
P = 4x + 10+ 6x + 8
P = 10x + 18 cm
2006-08-03 20:55:51
·
answer #6
·
answered by SAMUEL D 7
·
0⤊
0⤋
just remember for rectangle
Area = Length x Width
Perimeter= 2 x length + 2 x width
----------------------------------------------------
Length= 2x+5
Width = 3x+4
-----------------------------------------------------
So,
Area = Length x Width
= (2x+5) (3x+4)
= 6x² + 8x + 15x +20
= 6x² + 23x +20 cm²
Similarly
Perimeter = 2Length + 2width
=2(2x+5) + 2(3x+4)
= 4x+10 +6x +8
= 10x + 18 cm
--------------------------------------------------------
put value of x which can be 0,1,2,3,4,5..........
and it will satify above equations of perimeter and area
2006-08-03 20:53:45
·
answer #7
·
answered by Da Sahar SToRaY 2
·
0⤊
0⤋