y^2 - (-5)^2 = (2^2 + 1)^2
y^2 - 25 = (4+1)^2
y^2 - 25 = 5^2
y^2 - 25 = 25
y^2 = 50
y = +/- sqrt(50)
y = +/- sqrt(25*2)
y = +/- 5sqrt(2)
Answer: y = 5sqrt(2) or y = -5sqrt(2)
2006-07-31 18:26:37
·
answer #1
·
answered by MsMath 7
·
2⤊
1⤋
y² - a² = (c² + b)²
Solving for y
y² - a² = (c² + b)²
+a² +a²
Add +a² to both sides of the equation
y² = âa² + (c² + b)²
Insert a = - 5, b = 1 and c = 2 values into the equation
y² = â (-5)² + [(2)² + 1]²
y² = â25 + [4 + 1]²
y² = â 25 + 25
y² = â50
y = 7,071067812
y = 7.07 rounded to two decimal places
2006-08-01 08:25:07
·
answer #2
·
answered by SAMUEL D 7
·
0⤊
0⤋
^ = squared
given a = -5 b =1 c=2
y^2 - a^2 = (c^2+b)^2
y^2 = (c^2 + b)^2 + a^2
y^2 = (2^2 + 1) ^2+ -5^2
y^2 = 25 +25
y^2 = 50
y = squared root of 50
y = 7.07
Check the answer:
7.07^2 = (2^2 + 1)^2 + -5^2
50 = 50
2006-08-01 01:04:07
·
answer #3
·
answered by UOPHXstudent 4
·
0⤊
0⤋
y²-a² = (c²+b)²
y² = (c²+b)²+a² and put the values of a, b, c in this we get
y² = (2² + 1)² + 5²
y² = (4 + 1)² +25
y² = 25 + 25
y² = 50 so
y = â50
y = 7.07
2006-08-01 01:46:14
·
answer #4
·
answered by DigitalManic 2
·
0⤊
0⤋
It is so simple. Follow below.
y² = (2² + 1)² + 5²
y² = (4 + 1)² +25
y² = 25 + 25
y² = 50
y = â50
y = 7.071
2006-08-01 03:58:06
·
answer #5
·
answered by sharanan 2
·
0⤊
0⤋
y^2 - (-5)^2 = (2^2 + 1)^2
y^2 - (25) = (4 + 1)^2
y^2 - 25 = 5^2
y^2 - 25 = 25
y^2 = 50
y = sqrt(50)
y = sqrt(25 * 2)
y = 5sqrt(2)
2006-08-01 11:44:14
·
answer #6
·
answered by Sherman81 6
·
0⤊
0⤋
y^2 - a^2 = (c^2 + b)^2
solve for y:
y = sqrt ((c^2 + b)^2 + a^2)
substitute values:
y = sqrt((2^2 + 1)^2 + (-5)^2)
y = sqrt((4 + 1)^2 + 25)
y = sqrt (5^2 + 25)
y = sqrt (50)
y = 7.071
2006-08-01 01:15:48
·
answer #7
·
answered by phoebus 1
·
0⤊
0⤋
substitute the values
simplify
y = sqrt(50)
= 7.07
2006-08-01 04:45:40
·
answer #8
·
answered by Niwton 1
·
0⤊
0⤋
y²-a²=(c²+b)²
y²-(-5)²=(2²+1)²
y²-(25)=(4+1)²
y²-25=(5)²
y²-25=25
y²=25+25
y²=50
y=â50
y=7.071068
2006-08-01 07:24:36
·
answer #9
·
answered by Anonymous
·
0⤊
0⤋
y= sqrt(50)
2006-08-01 03:00:14
·
answer #10
·
answered by budweiser 2
·
0⤊
0⤋