English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

4 answers

Complete the square
(x^2 - 4x + 4) + (y^2 + 12y + 36) = 36+36+4

(x - 2)^2 + (y + 6)^2 = 76

Center at (2, -6) with radius sqrt(76)

2006-07-27 15:16:18 · answer #1 · answered by be_ez_2004 2 · 1 0

x^2 + y^2 - 4x + 12y - 36 = 0
x^2 - 4x + y^2 + 12y - 36 = 0
(x^2 - 4x) + (y^2 + 12y) - 36 = 0
(x^2 - 4x + 4 - 4) + (y^2 + 12y + 36 - 36) - 36 = 0
((x - 2)^2 - 4) + ((y + 6)^2 - 36) - 36 = 0
(x - 2)^2 - 4 + (y + 6)^2 - 36 - 36 = 0
(x - 2)^2 + (y + 6)^2 - 76 = 0
(x - 2)^2 + (y + 6)^2 = 76

(x - h)^2 + (y - k)^2 = r^2
Center = (h,k)

(x - 2)^2 + (y - (-6))^2 = sqrt(76)

Center : (2,-6)
Radius : 2sqrt(19)

2006-07-27 22:26:02 · answer #2 · answered by Sherman81 6 · 0 0

center is given by -2g,-2f and here
-2g=-4 and so g=2 and -2f=12
and so f=-6.so the center is (2,-6)
radius is given by (g^2+f^2-c)^1/2
=(4+36+36)^1/2
=(76)^1/2units

2006-07-28 08:17:28 · answer #3 · answered by raj 7 · 0 0

bull

2006-07-27 22:18:18 · answer #4 · answered by nicnic 2 · 0 0

fedest.com, questions and answers