English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

3 answers

Wow... long procedure. That's a 2 years in university kind of question.

Ok, so first you get your mRNAs for the protein. You reverse transcriptase the living crap out of them so you get the excised DNA. You clone it onto a vector with all its adequate integration sequences (if you wish it to be integrated permanently into the genome of your host) or with self cloning sequences, in which case i'd use a phage and not just a simple dna vector.

In any case. For the interest of producing the protein, integration is the way to go. So once it's integrated, you establish the protocols so the bacteria produces the protein like crazy (i.e. feed it the right stuff) and there you go.

Things to consider:
1- careful selecting your host, you want the protein to be a by-product, so select a bacterium that WILL NOT eat or use or degrade what you're trying to collect.
2- don't just assume your protein yield is pure, test it first.

Cheers.

2006-07-31 04:05:36 · answer #1 · answered by flammable 5 · 0 0

Other then making a cDNA from mRNA without any introns, and transforming the bacterium with it. You need to do all post translational modification for the bacterium since they don't do that. For instance, if you protein needs to be glycosylated.

2006-07-27 07:42:19 · answer #2 · answered by tsubame_z 2 · 0 0

Bacteria (singular: bacterium) are a major group of living organisms. The term "bacteria" has variously applied to all prokaryotes or to a major group of them, otherwise called the eubacteria, depending on ideas about their relationships. Here, bacteria is used specifically to refer to the eubacteria. Another major group of bacteria (used in the broadest, non-taxonomic sense) are the Archaea. The study of bacteria is known as bacteriology, a subfield of microbiology.

Bacteria are the most abundant of all organisms. They are ubiquitous in soil, water, and as symbionts of other organisms. Many pathogens are bacteria. Most are minute, usually only 0.5-5.0 μm in their longest dimension, although giant bacteria like Thiomargarita namibiensis and Epulopiscium fishelsoni may grow past 0.5 mm in size. They generally have cell walls, like plant and fungal cells, but bacterial cell walls are normally made out of peptidoglycan instead of cellulose (as in plants) or chitin (as in fungi), and are not homologous with eukaryotic cell walls. Many move around using flagella, which are different in structure from the flagella of other groups.
Movement

A-Monotrichous; B-Lophotrichous; C-Amphitrichous; D-Peritrichous;Motile bacteria can move about, using flagella, bacterial gliding, or changes of buoyancy. A unique group of bacteria, the spirochaetes, have structures similar to flagella, called axial filaments, between two membranes in the periplasmic space. They have a distinctive helical body that twists about as it moves.

Bacterial flagella are arranged in many different ways. Bacteria can have a single polar flagellum at one end of a cell, clusters of many flagella at one end or flagella scattered all over the cell, as with peritrichous. Many bacteria (such as E.coli) have two distinct modes of movement: forward movement (swimming) and tumbling. The tumbling allows them to reorient and introduces an important element of randomness in their forward movement. (See external links below for link to videos.)

Motile bacteria are attracted or repelled by certain stimuli, behaviors called taxes - for instance, chemotaxis, phototaxis, mechanotaxis, and magnetotaxis. In one peculiar group, the myxobacteria, individual bacteria attract to form swarms and may differentiate to form fruiting bodies. The myxobacteria move only when on solid surfaces, unlike E. coli which is motile in liquid or solid media.

[edit]
Groups and identification

Bacteria come in a wide variety of shapesHistorically, bacteria as originally studied by botanists were classified in the same way as plants, that is, mainly by shape. Bacteria come in a variety of different cell morphologies (shapes), including bacillus (rod-shape), coccus (spherical), spirillum (helical), and vibrio (curved bacillus). However, because of their small size bacteria are relatively uniform in shape and therefore classification based on morphology was unsuccessful. The first formal classification scheme was developed following the development of the Gram stain by Hans Christian Gram which separates bacteria based on the structural characteristics of their cell walls. This scheme included:

Gracilicutes - Gram negative staining bacteria with a second cell membrane
Firmicutes - Gram positive staining bacteria with a thick peptidoglycan wall
Mollicutes - Gram negative staining bacteria with no cell wall or second membrane
Mendosicutes - atypically staining strains now known to belong to the Archaea
Further developments (essentially) based on this scheme included comparisons of bacteria based on differences in cellular metabolism as determined by a wide variety of specific tests. Bacteria were also classified based on differences in cellular chemical compounds such as fatty acids, pigments, and quinones for example. While these schemes allowed for the differentiation between bacterial strains, it was unclear whether these differences represented variation between distinct species or between strains of the same species. It was not until the utilization of genome-based techniques such as %guanine+cytosine ratio determination, genome-genome hybridization and gene sequencing (in particular the rRNA gene) that microbial taxonomy developed (or at least is developing) into a stable, accurate classification system. It should be noted, however, that due to the existence numerous historical classification schemes and our current poor understanding of microbial diversity, bacterial taxonomy remains a changing and expanding field.

[edit]
Benefits and dangers
Bacteria are both harmful and useful to the environment and animals, including humans. The role of bacteria in disease and infection is important. Some bacteria act as pathogens and cause tetanus, typhoid fever, pneumonia, syphilis, cholera, food-borne illness, leprosy, and tuberculosis(TB). Sepsis, a systemic infectious syndrome characterized by shock and massive vasodilation, or localized infection, can be caused by bacteria such as Streptococcus, Staphylococcus, or many gram-negative bacteria. Some bacterial infections can spread throughout the host's body and become systemic. In plants, bacteria cause leaf spot, fireblight, and wilts. The mode of infection includes contact, air, food, water, and insect-borne microorganisms. The hosts infected with the pathogens may be treated with antibiotics, which can be classified as bacteriocidal and bacteriostatic, which at concentrations that can be reached in bodily fluids either kill bacteria or hamper their growth, respectively. Antiseptic measures may be taken to prevent infection by bacteria, for example, by swabbing skin with alcohol prior to piercing the skin with the needle of a syringe. Sterilization of surgical and dental instruments is done to make them sterile or pathogen-free to prevent contamination and infection by bacteria. Sanitizers and disinfectants are used to kill bacteria or other pathogens to prevent contamination and risk of infection.

In soil, microorganisms which reside in the rhizosphere (a zone that includes the root surface and the soil that adheres to the root after gentle shaking) help in the transformation of molecular dinitrogen gas as their source of nitrogen, converting it to nitrogenous compounds in a process known as nitrogen fixation. This serves to provide an easily absorbable form of nitrogen for many plants, which cannot fix nitrogen themselves. Many other bacteria are found as symbionts in humans and other organisms. For example, the presence of the gut flora in the large intestine can help prevent the growth of potentially harmful microbes.

The ability of bacteria to degrade a variety of organic compounds is remarkable. Highly specialized groups of microorganisms play important roles in the mineralization of specific classes of organic compounds. For example, the decomposition of cellulose, which is one of the most abundant constituents of plant tissues, is mainly brought about by aerobic bacteria that belong to the genus Cytophaga. This ability has also been utilized by humans in industry, waste processing, and bioremediation. Bacteria capable of digesting the hydrocarbons in petroleum are often used to clean up oil spills. Some beaches in Prince William Sound were fertilized in an attempt to facilitate the growth of such bacteria after the infamous 1989 Exxon Valdez oil spill. These efforts were effective on beaches that were not too thickly covered in oil.

Bacteria, often in combination with yeasts and molds, are used in the preparation of fermented foods such as cheese, pickles, soy sauce, sauerkraut, vinegar, wine, and yogurt. Using biotechnology techniques, bacteria can be bioengineered for the production of therapeutic drugs, such as insulin, or for the bioremediation of toxic wastes.

Friendly bacteria: a common reference to those bacteria that offer some benefit to human hosts, such as Lactobacillus species, which convert milk protein to lactic acid in the gut. The presence of such bacterial colonies also inhibits the growth of potentially pathogenic bacteria. Other bacteria that are helpful inside the body are many strains of E. coli, which is harmless and provides humans with Vitamin K

2006-07-27 07:04:53 · answer #3 · answered by Linda 7 · 0 0

fedest.com, questions and answers