English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

How do they know that this pattern will last forever? Why are they so sure that the pattern will not end somewhere?

2006-07-21 20:08:42 · 2 answers · asked by Anonymous in Science & Mathematics Mathematics

2 answers

Consider Pascal's Triangle mod 2:

••••1••••
•••1•1•••
••1•0•1••
•1•1•1•1•
1•0•0•0•1

Sorry about the weird look, but this is hard to do in answers.yahoo.

Now each row adds 1/2 of a place to each side (so 1 place total). Therefore when you continue it is impossible for the 0•0•0 (in the last row) to be filled in in less than 3 rows. Since 0's do not change anything, it is the same as having this triangle:

••••1••••
•••1•1•••
••1•0•1••
•1•1•1•1•

and then starting over at the two bottom corners (where we have the 1's in the original last row). Therefore (after 8 rows) we will get three copies of

••••1••••
•••1•1•••
••1•0•1••
•1•1•1•1•

and in the middle it will be filled with 0's.

Or this:

••••••••1••••••••
•••••••1•1•••••••
••••••1•0•1••••••
•••••1•1•1•1•••••
••••1•0•0•0•1••••
•••1•1•0•0•1•1•••
••1•0•1•0•1•0•1••
•1•1•1•1•1•1•1•1•

Since the bottom will be 1•1•1•1•1•1•1•1, the next row will be 1•0•0•0•0•0•0•0•1. Therefore using the same logic above we will get two more copies of the first 8 rows (with 0's in between). Then we continue and we will get two more copies of the first 16 rows . . . first 32 rows . . . and so on.

Therefore we will have a Sierpinski's triangle.

2006-07-21 21:10:43 · answer #1 · answered by Eulercrosser 4 · 3 0

It will last forever, that is determinsitic

2006-07-22 03:13:28 · answer #2 · answered by ag_iitkgp 7 · 0 0

fedest.com, questions and answers