English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

f(x)= ln(e^-x^20

and

f(theta) = sqrt(sin2Theta)

2006-07-19 19:04:41 · 4 answers · asked by c2pre 2 in Science & Mathematics Mathematics

f(x)= ln(e^-x^2) .. sorry

2006-07-19 19:15:34 · update #1

4 answers

A) -x^2

B) cos2theta^(-1/2) or

1 / sqrt(cos2theta)

2006-07-19 19:16:54 · answer #1 · answered by Anonymous · 0 0

(a)

If y = ln{e^(-x^2)}
then y = -x^2 since ln(e) =1
derivative is -2*x

(b)
derivative w.r.t. theta is
{1/[2*sqrt(sin(2theta) )]} * (cos(2theta) ) *2
cancelling the 2 we get

(cos(2theta) ) / sqrt(sin(2theta) )

2006-07-20 02:28:14 · answer #2 · answered by qwert 5 · 0 0

Is that f(x)=ln(e^(-x^20))?

If so, then f(x)=(-x^20)• ln(3)= -x^20. Thus f'(x)=-20x^19

f(x)=√(sin(2x)) = (sin(2x))^(1/2)

Thus by chain rule:
f'(x)=1/2(sin(2x))^(-1/2) • cos(2x)•2 = cos(2x)/√(sin(2x))

2006-07-20 02:07:50 · answer #3 · answered by Eulercrosser 4 · 0 0

f(x) = ln (e ^- x²)
f(x) = -x²
f'(x) = -2x
*********************
f(θ) = √sin2θ
f(θ) = (sin2θ) ^ ½
f'(θ) = 1/2 * (sin2θ) ^ -½ * (2cos2θ)
f'(x) = cos2θ / √sin2θ

2006-07-20 03:33:15 · answer #4 · answered by M. Abuhelwa 5 · 0 0

fedest.com, questions and answers