English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

(a+b+c)3(to the power 3)

2006-07-08 03:01:55 · 12 answers · asked by baban 2 in Science & Mathematics Mathematics

12 answers

In TeX:

(a+b+c)^{3} = \sum_{i,j=0}^{3} \frac{3!}{i! j! (3-i-j)!} a^{i} b^{j} c^{3-i-j}

For the expansion of (a + b + c)^{n}, replace 3 with n everywhere in the above formula.

2006-07-08 04:59:24 · answer #1 · answered by mathbear77 2 · 0 0

Eulercrosser has it right except that he forgot the abc term. If you substitute a = b = c = 1, you get (1+1+1)^3 which is 3^3 or 27. So the coefficients should add up to 27. Eulercrosser's coefficients add to 21. Each term of the answer consists of picking a letter from {a,b,c} three times (for example, bca or aab), so this becomes a combinatorial problem. The missing term is +6abc:

a^3+3(a^2)b+3(a^2)c+ b^2+3(b^2)a+3(b^2)c +c^2+3(c^2)a+3(c^2)b + 6abc

2006-07-08 10:23:06 · answer #2 · answered by alnitaka 4 · 0 0

(a+b+c)^3

2006-07-08 10:05:41 · answer #3 · answered by itascatom 1 · 0 0

(a+b+c)^3

2006-07-08 10:04:56 · answer #4 · answered by a_poor_misguided_soul 5 · 0 0

(a+b+c)(a+b+c)(a+b+c)

The product of the first 2 factors is

a^2+2ab+2ac+b^2+2bc+c^2

Multiplying this result by the third factor gives

a^3 + 3a^2(b) + 3a^2(c) + 3ab^2 + 6abc + 3ac^2 + b^3
+ 3b^2(c) + 3bc^2 + c^3

2006-07-08 16:19:20 · answer #5 · answered by kindricko 7 · 0 0

(a+b+c)^3= ((a+b)+c)^3= (a+b)^3 +3*(a+b)^2*c+3*(a+b)*c^2 +c^3=.... just continue the process

2006-07-08 10:11:55 · answer #6 · answered by madnaco 1 · 0 0

(a + b + c)^3

(a + b + c)(a + b + c)(a + b + c)

(a^2 + ab + ac + ab + b^2 + bc + ac + bc + c^2)(a + b + c)

(a^2 + 2ab + 2ac + 2bc + b^2 + c^2)(a + b + c)

a^3 + a^2b + a^2c + 2a^2b + 2ab^2 + 2abc + 2a^2c + 2abc + 2ac^2 + 2abc + 2b^2c + 2bc^2 + ab^2 + b^3 + b^2c + ac^2 + bc^2 + c^3

a^3 + 3a^2b + 3a^2c + 3ab^2 + 6abc + 3ac^2 + 3b^2c + 3bc^2 + b^3 + c^3

2006-07-08 16:30:50 · answer #7 · answered by Sherman81 6 · 0 0

(a+b+c)^3=(a+b+c)(a+b+c)(a+b+c)
=(a^2 + b^2 + c^2 + 2ab + 2ac + 2bc)(a+b+c)
=(a^3 + ab^2 + ac^2 +2a^2b + 2a^2c + 2abc + a^2b + b^3 + bc^2 + 2ab^2 + 2abc + 2b^2c + a^2c + b^2c + c^3 + 2abc + 2ac^2 + 2bc^2)

you'll have to check my arithmetic over, I haven't done any math for 3 years!

2006-07-08 10:13:14 · answer #8 · answered by candied_arsenic 2 · 0 0

a^3 + b^3 + c^3 + 3ab(a+b) + 3bc(b+c) + 3ac(a+c) + 6abc

2006-07-08 10:21:21 · answer #9 · answered by Enigma 2 · 0 0

a3+b3+c3

2006-07-08 10:05:30 · answer #10 · answered by RIVER 6 · 0 0

fedest.com, questions and answers