question is not clear..where u used?
2006-06-28 00:14:01
·
answer #1
·
answered by Raju.K.M 5
·
0⤊
0⤋
Carbon nanotubes (CNTs) are cylindrical carbon molecules with novel properties that make them potentially useful in a wide variety of applications in nanotechnology, electronics, optics, and other fields of materials science. They exhibit extraordinary strength and unique electrical properties, and are efficient conductors of heat. Inorganic nanotubes have also been synthesized.
A nanotube is a member of the fullerene structural family, which also includes buckyballs. Whereas buckyballs are spherical in shape, a nanotube is cylindrical, with at least one end typically capped with a hemisphere of the buckyball structure. Their name is derived from their size, since the diameter of a nanotube is on the order of a few nanometers (approximately 50,000 times smaller than the width of a human hair), while they can be up to several micrometers in length. There are two main types of nanotubes: single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs).
Nanotubes are composed entirely of sp2 bonds, similar to those of graphite. This bonding structure, stronger than the sp3 bonds found in diamond, provides the molecules with their unique strength. Nanotubes naturally align themselves into "ropes" held together by Van der Waals forces. Under high pressure, nanotubes can merge together, trading some sp2 bonds for sp3 bonds, giving great possibility for producing strong, unlimited-length wires through high-pressure nanotube linking [1].
While it has long been known that carbon fibers can be produced with a carbon arc, and patents were issued for the process, it was not until 1991 that Sumio Iijima, a researcher with the NEC Laboratory in Tsukuba, Japan, observed that these fibers were hollow. This feature of nanotubes is of great interest to physicists because it permits experiments in one-dimensional quantum physics.
2006-06-28 00:30:40
·
answer #2
·
answered by Anonymous
·
0⤊
0⤋
Carbon nanotubes (CNTs) are cylindrical carbon molecules with novel properties that make them potentially useful in a wide variety of applications in nanotechnology, electronics, optics, and other fields of materials science. They exhibit extraordinary strength and unique electrical properties, and are efficient conductors of heat. Inorganic nanotubes have also been synthesized.
A nanotube is a member of the fullerene structural family, which also includes buckyballs. Whereas buckyballs are spherical in shape, a nanotube is cylindrical, with at least one end typically capped with a hemisphere of the buckyball structure. Their name is derived from their size, since the diameter of a nanotube is on the order of a few nanometers (approximately 50,000 times smaller than the width of a human hair), while they can be up to several micrometers in length. There are two main types of nanotubes: single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs).
Nanotubes are composed entirely of sp2 bonds, similar to those of graphite. This bonding structure, stronger than the sp3 bonds found in diamond, provides the molecules with their unique strength. Nanotubes naturally align themselves into "ropes" held together by Van der Waals forces. Under high pressure, nanotubes can merge together, trading some sp2 bonds for sp3 bonds, giving great possibility for producing strong, unlimited-length wires through high-pressure nanotube linking [1].
While it has long been known that carbon fibers can be produced with a carbon arc, and patents were issued for the process, it was not until 1991 that Sumio Iijima, a researcher with the NEC Laboratory in Tsukuba, Japan, observed that these fibers were hollow. This feature of nanotubes is of great interest to physicists because it permits experiments in one-dimensional quantum physics.
2006-06-28 00:15:15
·
answer #3
·
answered by Anonymous
·
0⤊
0⤋
Do you mean Carbon Nanotubes?
nanotubes (CNTs) are cylindrical carbon molecules with novel properties that make them potentially useful in a wide variety of applications in nanotechnology, electronics, optics, and other fields of materials science. They exhibit extraordinary strength and unique electrical properties, and are efficient conductors of heat. Inorganic nanotubes have also been synthesized.
A nanotube is a member of the fullerene structural family, which also includes buckyballs. Whereas buckyballs are spherical in shape, a nanotube is cylindrical, with at least one end typically capped with a hemisphere of the buckyball structure. Their name is derived from their size, since the diameter of a nanotube is on the order of a few nanometers (approximately 50,000 times smaller than the width of a human hair), while they can be up to several micrometers in length. There are two main types of nanotubes: single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs).
Nanotubes are composed entirely of sp2 bonds, similar to those of graphite. This bonding structure, stronger than the sp3 bonds found in diamond, provides the molecules with their unique strength. Nanotubes naturally align themselves into "ropes" held together by Van der Waals forces. Under high pressure, nanotubes can merge together, trading some sp2 bonds for sp3 bonds, giving great possibility for producing strong, unlimited-length wires through high-pressure nanotube linking [1].
While it has long been known that carbon fibers can be produced with a carbon arc, and patents were issued for the process, it was not until 1991 that Sumio Iijima, a researcher with the NEC Laboratory in Tsukuba, Japan, observed that these fibers were hollow. This feature of nanotubes is of great interest to physicists because it permits experiments in one-dimensional quantum physics.
2006-06-28 00:16:17
·
answer #4
·
answered by Miss LaStrange 5
·
0⤊
0⤋
Carbon nanotubes (CNTs) are cylindrical carbon molecules with novel properties that make them potentially useful in a wide variety of applications in nanotechnology, electronics, optics, and other fields of materials science. They exhibit extraordinary strength and unique electrical properties, and are efficient conductors of heat. Inorganic nanotubes have also been synthesized.
A nanotube is a member of the fullerene structural family, which also includes buckyballs. Whereas buckyballs are spherical in shape, a nanotube is cylindrical, with at least one end typically capped with a hemisphere of the buckyball structure. Their name is derived from their size, since the diameter of a nanotube is on the order of a few nanometers (approximately 50,000 times smaller than the width of a human hair), while they can be up to several micrometers in length. There are two main types of nanotubes: single-walled nanotubes (SWNTs) and multi-walled nanotubes (MWNTs).
2006-06-28 00:16:59
·
answer #5
·
answered by Anonymous
·
0⤊
0⤋
Carbon nanotubes are molecular-scale tubes of graphitic carbon with outstanding properties. They are among the stiffest and strongest fibres known, and have remarkable electronic properties and many other unique characteristics. For these reasons they have attracted huge academic and industrial interest, with thousands of papers on nanotubes being published every year. Commercial applications have been rather slow to develop, however, primarily because of the high production costs of the best quality nanotubes.
2006-06-28 00:16:19
·
answer #6
·
answered by emma882 2
·
0⤊
0⤋
a pencil
2006-06-28 00:14:31
·
answer #7
·
answered by Tbaylinda 2
·
0⤊
0⤋