First part:
tan^2(x) = 2sec(x) - 1
or sec^2(x) - 1 = 2sec(x) - 1
or sec^2(x) - 2*sec(x) = 0
or {sec(x) - 2}*sec(x) = 0
Therefore either sec(x) = 0 or sec(x) = 2
i.e. either cos(x) = 1/0 or cos(x) = 1/2.
Since division by 0 is undefined so cos(x) = 1/0 is not admissible.
Hence, cos(x) = 1/2
As 0 < x < 2*pi, so x = pi/3 or 5pi/3
Second part:
sin(x) - {sqrt(3)}*cos (x) = 1
Dividing both sides by 2
(1/2)*sin(x) - {sqrt(3)/2}*cos (x) = 1/2
or {sin(x)}*{cos(pi/3)} - {cos(X)}*{sin(pi/3)} = sin(pi/6)
or sin{x - (pi/3)} - sin(pi/6) = 0
or 2*cos{x + (pi/3)}*sin{x - (pi/2)} = 0
Either
cos{x + (pi/3)} = 0
i.e. x + (pi/3) = n(pi/2)
[where n = +/-1,+/-3,+/-5,.....]
i.e. x = pi/6, 7*pi/6
[for n = 1 and 3; for other values of 'n' x is outside the interval 0 < x < 2*pi]]
Or
x - (pi/2) = n*pi
[where n = 0, +/-1, +/-2, +/-3, .......]
i.e. x = pi/2, 3*pi/2
Answer: x = pi/6, pi/3, 3*pi/2, 7*pi/6
2006-06-15 02:24:37
·
answer #1
·
answered by psbhowmick 6
·
2⤊
0⤋