Euclid
Pythagoras
Thales of Miletus
Hippocrates of Chios
Plato
Menaechmus
Archimedes of Syracuse
Claudius Ptolemy
Hypatia of Alexandria
Descartes
Pascal
Euler
I suggest you pick someone not as obvious as Pythagoras or Euclid. Hypatia (first woman mathematician) is facinating as are Ptolmy, Pascal, & Archimedes of Syracuse. My students did projects on them and they were great! Go for it. =)
2006-06-12 13:05:18
·
answer #1
·
answered by Dukie 5
·
1⤊
1⤋
depends on what time period you are looking at - but i will assume you want someone in relatiovely recent history - because geometry has been developing since 3500 BC from ancient india, greeks, arabs etc.
Your best bet will be Rene Descartes (1596 - 1650) cuz he is well known and there is probably stuff out there for him.
Others include - Pierre de Fermat, Girard Desargues etc.
2006-06-11 22:32:09
·
answer #2
·
answered by alxsml 2
·
0⤊
0⤋
Pythagoras or Euclid, please see the two blurbs below.
Of course today we particularly remember Pythagoras for his famous geometry theorem. Although the theorem, now known as Pythagoras's theorem, was known to the Babylonians 1000 years earlier he may have been the first to prove it. Proclus, the last major Greek philosopher, who lived around 450 AD wrote (see [7])
After [Thales, etc.] Pythagoras transformed the study of geometry into a liberal education, examining the principles of the science from the beginning and probing the theorems in an immaterial and intellectual manner: he it was who discovered the theory of irrational and the construction of the cosmic figures.
Again Proclus, writing of geometry, said:-
I emulate the Pythagoreans who even had a conventional phrase to express what I mean "a figure and a platform, not a figure and a sixpence", by which they implied that the geometry which is deserving of study is that which, at each new theorem, sets up a platform to ascend by, and lifts the soul on high instead of allowing it to go down among the sensible objects and so become subservient to the common needs of this mortal life.
Heath [7] gives a list of theorems attributed to Pythagoras, or rather more generally to the Pythagoreans.
(i) The sum of the angles of a triangle is equal to two right angles. Also the Pythagoreans knew the generalisation which states that a polygon with n sides has sum of interior angles 2n - 4 right angles and sum of exterior angles equal to four right angles.
(ii) The theorem of Pythagoras - for a right angled triangle the square on the hypotenuse is equal to the sum of the squares on the other two sides. We should note here that to Pythagoras the square on the hypotenuse would certainly not be thought of as a number multiplied by itself, but rather as a geometrical square constructed on the side. To say that the sum of two squares is equal to a third square meant that the two squares could be cut up and reassembled to form a square identical to the third square.
(iii) Constructing figures of a given area and geometrical algebra. For example they solved equations such as a (a - x) = x2 by geometrical means.
(iv) The discovery of irrationals. This is certainly attributed to the Pythagoreans but it does seem unlikely to have been due to Pythagoras himself. This went against Pythagoras's philosophy the all things are numbers, since by a number he meant the ratio of two whole numbers. However, because of his belief that all things are numbers it would be a natural task to try to prove that the hypotenuse of an isosceles right angled triangle had a length corresponding to a number.
(v) The five regular solids. It is thought that Pythagoras himself knew how to construct the first three but it is unlikely that he would have known how to construct the other two.
Euclid of Alexandria is the most prominent mathematician of antiquity best known for his treatise on mathematics The Elements. The long lasting nature of The Elements must make Euclid the leading mathematics teacher of all time. However little is known of Euclid's life except that he taught at Alexandria in Egypt. Proclus, the last major Greek philosopher, who lived around 450 AD wrote (see [1] or [9] or many other sources):-
Euclid's most famous work is his treatise on mathematics The Elements. The book was a compilation of knowledge that became the centre of mathematical teaching for 2000 years. Probably no results in The Elements were first proved by Euclid but the organisation of the material and its exposition are certainly due to him. In fact there is ample evidence that Euclid is using earlier textbooks as he writes the Elements since he introduces quite a number of definitions which are never used such as that of an oblong, a rhombus, and a rhomboid.
The Elements begins with definitions and five postulates. The first three postulates are postulates of construction, for example the first postulate states that it is possible to draw a straight line between any two points. These postulates also implicitly assume the existence of points, lines and circles and then the existence of other geometric objects are deduced from the fact that these exist. There are other assumptions in the postulates which are not explicit. For example it is assumed that there is a unique line joining any two points. Similarly postulates two and three, on producing straight lines and drawing circles, respectively, assume the uniqueness of the objects the possibility of whose construction is being postulated.
The fourth and fifth postulates are of a different nature. Postulate four states that all right angles are equal. This may seem "obvious" but it actually assumes that space in homogeneous - by this we mean that a figure will be independent of the position in space in which it is placed. The famous fifth, or parallel, postulate states that one and only one line can be drawn through a point parallel to a given line. Euclid's decision to make this a postulate led to Euclidean geometry. It was not until the 19th century that this postulate was dropped and non-euclidean geometries were studied.
There are also axioms which Euclid calls 'common notions'. These are not specific geometrical properties but rather general assumptions which allow mathematics to proceed as a deductive science. For example:-
Things which are equal to the same thing are equal to each other.
Zeno of Sidon, about 250 years after Euclid wrote the Elements, seems to have been the first to show that Euclid's propositions were not deduced from the postulates and axioms alone, and Euclid does make other subtle assumptions.
The Elements is divided into 13 books. Books one to six deal with plane geometry. In particular books one and two set out basic properties of triangles, parallels, parallelograms, rectangles and squares. Book three studies properties of the circle while book four deals with problems about circles and is thought largely to set out work of the followers of Pythagoras. Book five lays out the work of Eudoxus on proportion applied to commensurable and incommensurable magnitudes. Heath says [9]:-
Greek mathematics can boast no finer discovery than this theory, which put on a sound footing so much of geometry as depended on the use of proportion.
Book six looks at applications of the results of book five to plane geometry.
Books seven to nine deal with number theory. In particular book seven is a self-contained introduction to number theory and contains the Euclidean algorithm for finding the greatest common divisor of two numbers. Book eight looks at numbers in geometrical progression but van der Waerden writes in [2] that it contains:-
... cumbersome enunciations, needless repetitions, and even logical fallacies. Apparently Euclid's exposition excelled only in those parts in which he had excellent sources at his disposal.
Book ten deals with the theory of irrational numbers and is mainly the work of Theaetetus. Euclid changed the proofs of several theorems in this book so that they fitted the new definition of proportion given by Eudoxus.
Books eleven to thirteen deal with three-dimensional geometry. In book eleven the basic definitions needed for the three books together are given. The theorems then follow a fairly similar pattern to the two-dimensional analogues previously given in books one and four. The main results of book twelve are that circles are to one another as the squares of their diameters and that spheres are to each other as the cubes of their diameters. These results are certainly due to Eudoxus. Euclid proves these theorems using the "method of exhaustion" as invented by Eudoxus. The Elements ends with book thirteen which discusses the properties of the five regular polyhedra and gives a proof that there are precisely five. This book appears to be based largely on an earlier treatise by Theaetetus.
Euclid's Elements is remarkable for the clarity with which the theorems are stated and proved. The standard of rigour was to become a goal for the inventors of the calculus centuries later. As Heath writes in [9]:-
This wonderful book, with all its imperfections, which are indeed slight enough when account is taken of the date it appeared, is and will doubtless remain the greatest mathematical textbook of all time. ... Even in Greek times the most accomplished mathematicians occupied themselves with it: Heron, Pappus, Porphyry, Proclus and Simplicius wrote commentaries; Theon of Alexandria re-edited it, altering the language here and there, mostly with a view to greater clearness and consistency...
It is a fascinating story how the Elements has survived from Euclid's time and this is told well by Fowler in [7]. He describes the earliest material relating to the Elements which has survived:-
Our earliest glimpse of Euclidean material will be the most remarkable for a thousand years, six fragmentary ostraca containing text and a figure ... found on Elephantine Island in 1906/07 and 1907/08... These texts are early, though still more than 100 years after the death of Plato (they are dated on palaeographic grounds to the third quarter of the third century BC); advanced (they deal with the results found in the "Elements" [book thirteen] ... on the pentagon, hexagon, decagon, and icosahedron); and they do not follow the text of the Elements. ... So they give evidence of someone in the third century BC, located more than 500 miles south of Alexandria, working through this difficult material... this may be an attempt to understand the mathematics, and not a slavish copying ...
The next fragment that we have dates from 75 - 125 AD and again appears to be notes by someone trying to understand the material of the Elements.
2006-06-11 22:55:55
·
answer #6
·
answered by Stray Kittycat 4
·
0⤊
0⤋