English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
All categories

2006-06-10 19:21:13 · 2 answers · asked by top_ace_striker 2 in Science & Mathematics Mathematics

2 answers

collect like terms on one side
xdx/(1+x^2)=dy/[(1+y^2)*y]

1/2* 2x/(1+x^2)= dy/y-1/2*2y/(1+y^2)

By integrating each side,
1/2*ln(1+x^2)
=ln|y|-1/2*ln(1+y^2)

use log rules, take square of both sides,

C*y^2 / (1+y^2)=1+x^2

y=sqrt([1+x^2]/[C-1-x^2])

2006-06-10 22:43:45 · answer #1 · answered by iyiogrenci 6 · 0 1

Write the eqn. :
xdx/(1+x^2)=dy/y*(1+y^2)
2xdx/(1+x^2)=2ydy/y^2*(1+y^2)
now put [1+x^2]=z & y^2=t. Then a very simple integration follows. Hence finish the problem.

2006-06-11 02:49:37 · answer #2 · answered by Anonymous · 0 0

fedest.com, questions and answers