If a nxn matrix A has n linearly independent eigenvectors,then exist the inverse matrix of A? Turth or False
2007-12-28 05:05:33 · 3 個解答 · 發問者 暗黑中的紅月 2 in 科學 ➔ 數學
false. 取A=0矩陣。那麼所有R^n的向量都是eigenvector,並且,只要取標準基底,就可以發現滿足題目的條件。但很顯然A並不可逆。
2007-12-29 06:31:03 補充:
因為A是0矩陣,所以 Av = 0* v,對所有的向量v均成立。因此,對標準基底也成立。
2007-12-28 07:16:31 · answer #1 · answered by 數學家 3 · 0⤊ 0⤋
既然它有獨立線性 方程,當然會有一個反矩陣
所以答案是 turth
2007-12-28 10:29:45 · answer #2 · answered by 維展 1 · 0⤊ 0⤋
False!
If 0 is an eigenvalue of A, then det(A)=0, A is a singular matrix.
Eg.
A=(6, 16 // -2, -5), then (-5, 2), (3, -1) are 2 linearly independent eigenvectors, but det(A)=0, A-1 does not exist.
2007-12-28 07:21:37 · answer #3 · answered by mathmanliu 7 · 0⤊ 0⤋