English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
所有分類

Solve the initial value problem. Check that your answer satisfies the ODE as well the initial Conditions. (Show the details of your work.)


y''-25y=0 y(0)=0, y'(0)=40

越快越好

感恩

2007-12-11 21:39:43 · 1 個解答 · 發問者 Anonymous in 科學 數學

1 個解答

法一:輔助方程式解法
(1)輔助(特徵)方程式 m² - 25 = 0 ==> m = 5, -5
故通解為 y = A e^(5x) + B e^(-5x)
(2)求 A, B
y(0) = 0 => A + B = 0
y'(0)=40 => 5A - 5B = 40
解聯立得 A = 4, B = -4
故 y = 4 [ e^(5x) - e^(-5x) ]
(3)Check
y = 4 [ e^(5x) - e^(-5x) ]
y"=100[ e^(5x) - e^(-x) ]
代入 y" - 25 y 得 0,
且y(0)=4(1-1)=0 , y'(0)= 20(1+1)=40

故 y = 4 [ e^(5x) - e^(-5x) ]

法二: 直接猜測解法
(猜)設 y=e^(mx) 滿足 y" - 25y =0 (註: m未知)
代入 y" - 25 y =0, 則
(m² - 25)e^(mx) = 0, 故只要 m²- 25= 0 (即 m = 5, -5), 則
y=e^(5x), y=e^(-5x)均為 y" - 25y = 0之解
又e^(5x), e^(-5x)線性獨立, 且原ODE為線性齊次ODE,
故通解為 y = A e^(5x) + B e^(-5x)

註: A, B之計算, 與法一同

2007-12-11 22:13:31 · answer #1 · answered by mathmanliu 7 · 0 0

fedest.com, questions and answers