哪位大爺可以幫我解決下面兩題... 多謝
give an example of fuction f(x) and g(x) such that:
1. lim[f(x)+g(x)] exists but lim(x) and limg(x) do not exist.
2. lim[f(x)˙g(x)] exists but at least one of lim(x) and limg(x) do not exist.
以上的極限都是x->0 [ x趨近於0 ]
2007-12-11 17:25:08 · 3 個解答 · 發問者 Josh 1 in 科學 ➔ 數學
找兩個分段定義函數即可:
設x>=0時, f(x)=1, g(x)=0; x<0時, f(x)=0, g(x)=1, 則
x->0時 f(x), g(x)之lim均不存在,但
lim(x->0) [ f(x)+g(x) ] = 1 (存在)
lim(x->0) [ f(x)*g(x) ] = 0 (存在)
2007-12-12 19:41:32 · answer #1 · answered by mathmanliu 7 · 0⤊ 0⤋
lim[f(x)+g(x)] exists but lim(x) and limg(x) do not exist.
是 "lim f(x) and lim g(x) ..." 吧?
很簡單啊! 例如 f(x)=-g(x). 而要舉 lim f(x) 不存在的例子, 就
看你考慮 x 趨於哪裡的極限啊!
當場比較不那麼無聊 (trivial) 的例子也很容易! 只要把上面
那個例子稍做修改.
第2題也很簡單啊! 舉個極限為 +∞ 或 -∞ 的當 f(x), 然後
g(x) = 1/f(x).
要兩個極限都不存在也很容易! 例如
f(x)=g(x) = 1 if x rational, = -1 if x irrational
不管你考慮 x 趨於哪裡的極限它都不存在,
但 f(x)g(x) 恆為 1.
事實上這例子稍做修改, 又成了第1題的例子.
2007-12-11 20:07:21 · answer #2 · answered by 老怪物 7 · 0⤊ 0⤋
1. lim[f(x)+g(x)] exists but lim(x) and limg(x) do not exist.
f(x)=lim n -> 無窮 [ Σ 1to n (1) ]
g(x)=lim n -> 無窮 [ Σ 1to n (-1) ]
2. lim[f(x)˙g(x)] exists but at least one of lim(x) and limg(x) do not exist.
f(x)=0
g(x)=Σ1
2007-12-11 18:18:49 · answer #3 · answered by ? 1 · 0⤊ 0⤋