Prove that if G is an abelian group , written multiplicatively,with identity e,
then all elements x of G satisfying the equation x^2=e form a subgroup H of G.
2007-12-10 13:01:29 · 1 個解答 · 發問者 青ㄟ 6 in 科學 ➔ 數學
H={ x | x in G and x² = e }
(1) e in H (因 e² = e )
(2) if x, y in H, then xy in H
因 (xy)² = xyxy = xxyy (abelian & associative)
= x² y² = ee = e
(3) if x in H, then x^(-1) in H
因 x² = e => x^(-1) = x
故 x^(-1) in H
由(1),(2),(3)知, H 為 G 之 subgroup
2007-12-10 16:34:35 · answer #1 · answered by mathmanliu 7 · 0⤊ 0⤋