Let f(x) = 0 for x <= 0 ,
and f(x) = 1 - cos x for x >= 0 .
Is f differentiable at x = 0 ?
2007-12-01 15:17:16 · 2 個解答 · 發問者 無能 1 in 科學 ➔ 數學
豪哥你第六行到第七行三角函數變換我看不太懂
菩提你第五行到第六行記算是不是有錯誤?
2007-12-02 08:58:59 · update #1
菩提你的
lim(x->0+) (sinx/x)*(sinx/(1-cosx))=1*0=0
其中 lim(x->0+) (sinx/(1-cosx)=0 是怎麼算的?
2007-12-02 20:24:48 · update #2
複製錯誤!
應該是 lim(x->0+) (sinx/(1+cosx)=0
2007-12-02 20:25:44 · update #3
f'(0)=lim(x->0)[f(x)-f(0)]/(x-0)
=lim(x->0)f(x)/x
When x<=0,lim(x->0-)f(x)/x
=lim(x->0-)0/x=0
When x>=0,lim(x->0+)f(x)/x
=lim(x->0+)(1-cosx)/x
=lim(x->0+)sinx
=0
so f is differentiable at x=0
and f'(0)=0
2007-12-01 23:33:39 補充:
有錯要告訴
2007-12-02 22:20:29 補充:
喔!第六到第七行是使用洛必達法則
不定型0/0上下微
2007-12-01 18:33:03 · answer #1 · answered by ? 7 · 0⤊ 0⤋
x=0處是否可微分,定義是
lim(x->0) (f(x)-f(0))/x 是否存在?
而本題f(x)在x=0附近分開定義,故須考慮one-sided lim
lim(x->0+) (f(x)-f(0))/x
=lim(x->0+) (1-cosx-0)/x
=lim(x->0+) sin²x/(x(1-cosx))
=lim(x->0+) (sinx/x)*(sinx/(1-cosx))=1*0=0
又
lim(x->0-) (f(x)-f(0))/x
=lim(x->0-) 0/x=0
即lim(x->0) (f(x)-f(0))/x存在
故f(x)在x=0處可微分
2007-12-03 00:05:29 補充:
Sorry!
第5行到第6行是同乘1+cosx
故第6行應是lim(x->0) sin²x/(x(1+cosx))
=lim(x->0+) (sinx/x)*(sinx/(1+cosx))=1*0=0
謝謝你的仔細檢查!
2007-12-01 19:25:15 · answer #2 · answered by mathmanliu 7 · 0⤊ 0⤋