English Deutsch Français Italiano Español Português 繁體中文 Bahasa Indonesia Tiếng Việt ภาษาไทย
所有分類

Y=arccos((b+acosx)/(a+bcosx)),0小於等於X小於等於PI,A>B>0

請微分,盡可能附過程謝謝.

2007-12-01 08:35:49 · 1 個解答 · 發問者 ? 2 in 科學 數學

1 個解答

1.導函數
設u=(b+acosx)/(a+bcosx),
du/dx=[-asinx(a+bcosx)+bsinx(b+acosx)]/(a+bcosx)²
=-(a²-b²)sinx/(a+bcosx)²
dy/dx=dy/du*du/dx
=-1/√(1-u²)*du/dx
(化簡)1-u²=1-(b+acosx)²/(a+bcosx)²=(a²-b²)sin²x/(a+bcosx)²
故dy/dx=√(a²-b²)/(a+bcosx)

2.微分
dy=dy/dx * dx=√(a²-b²)/(a+bcosx) * dx

註:導函數與微分不同喔!

2007-12-01 10:46:57 · answer #1 · answered by mathmanliu 7 · 0 0

fedest.com, questions and answers