The Volterra operator V on L^2[0,1] is define by
(Vf)(t)=∫(0~t)f(s)ds
a.Show that V has no eigenvalue
b.Prove by induction that
(V^n)(f)(t)=∫(0~t)(t-s)^(n-1)f(s)ds/(n-1)!
2007-11-22 18:53:01 · 1 個解答 · 發問者 ? 7 in 科學 ➔ 數學
b.
n=k+1時
(V^(k+1))(f)(t)=∫(0~t)∫(0~x)(x-s)^(k-1)f(s)ds/(k-1)! dx
(交換積分順序)
=∫(0~t)∫(s~t)(x-s)^(k-1)f(s)dx/(k-1)! ds
=∫(0~t)(t-s)^kf(s)/k! ds
故得證
2007-11-29 18:16:30 補充:
a.
設∫(0~t)f(s)ds=k*f(t), k≠0,
則f(0)=0且f(t)=C*exp(t/k) a.e. (不可能)
故沒有eigenvalue & eigenfn.
註:偷偷用了微分方程式(可能有點問題吧!?)
2007-11-29 12:03:25 · answer #1 · answered by mathmanliu 7 · 0⤊ 0⤋