(1) 1*n+2(n-1)+3(n-2)+......+n*1=??
(2) 1+(1+(1+2))+(1+(1+2)+(1+2+3))+......+(1+(1+2)+(1+2+3)+......+(1+2+3+......+n)=??
2007-11-03 07:40:32 · 2 個解答 · 發問者 哲 1 in 科學 ➔ 數學
n
Σ k * ( n + 1 - k ) = Σ nk + k - k^2 = Σnk + Σk - Σk^2
k=1
=> Σnk = n * Σk = n * [ ( n )( n + 1 ) / 2 ]
Σk = ( n )( n + 1 ) / 2
Σk^2 = ( n ) * ( n + 1 ) ( 2n + 1 ) / 6
=> n * [ ( n )( n + 1 ) / 2 ] + ( n )( n + 1 ) / 2 -(n)*( n + 1 ) ( 2n + 1 ) / 6
= [ ( n )( n + 1 ) / 2 ] * [ n + 1 - ( 2n + 1 ) / 3 ]
= [ ( n )( n + 1 ) / 2 ] * [ ( n + 2 ) / 3 ]
= ( n ) ( n + 1 ) ( n + 2 ) / 6
2. 先算出這東西的第 an 項
a1項是 1 . a2 項是 1 + ( 1 + 2 )
n
Σk = n ( n + 1 ) / 2
k=1
=>第 an項就是
n
Σ k ( k + 1 ) / 2 = Σ ( k^2 + Σk ) / 2 = n * ( n + 1 ) ( n + 2 ) / 6
k=1
所以這個級數的和就是
n
Σ k * ( k + 1 ) ( k + 2 ) / 6 = ( Σ k^3 + 3Σk^2 + 2Σk ) / 6
k=1
Σk^3 = [ n * ( n + 1 ) / 2 ]^2
Σk^2 = n ( n + 1 ) ( 2n + 1 ) / 6
Σk = n ( n + 1 ) / 2
=>( Σ k^3 + 3Σk^2 + 2Σk ) / 6
= { [ n * ( n + 1 ) / 2 ]^2 + n ( n + 1 ) ( 2n + 1 ) / 2 + ( n ) ( n + 1 ) }/ 6
= [ ( n ) ( n + 1 ) ( n + 2 ) ( n + 3 ) / 4 ] / 6
= ( n ) ( n + 1 ) ( n + 2 ) ( n + 3 ) / 24
2007-11-03 08:44:53 · answer #1 · answered by 失去羽翼的羊 6 · 0⤊ 0⤋
這一題已經有人問過了,
我的回答請參考
http//tw.knowledge.yahoo.com/question/question?qid=1007102806594
2007-11-03 08:43:06 · answer #2 · answered by GONG 6 · 0⤊ 0⤋