設x為實數 試求 6x/x^2+1 的最大值
需解題過程 謝謝!!
2007-10-10 17:07:41 · 4 個解答 · 發問者 ? 2 in 科學 ➔ 數學
令 6x / ( x^2 + 1 ) = k
=> 6x = kx^2 + k
=> kx^2 - 6x + k = 0 ( 因為有解 ,所以用判別式 )
=> 36 - 4k^2 >= 0
=> k^2 <= 9
=> - 3 <= k <= 3
2007-10-10 23:56:05 補充:
所以最大值是 3
2007-10-10 18:39:51 · answer #1 · answered by 失去羽翼的羊 6 · 0⤊ 0⤋
題目是6x/(x^2+1)
還是[6x/(x^2)]+1...
可以說清楚一點嗎??
2007-10-18 17:39:52 · answer #2 · answered by 螞蟻 2 · 0⤊ 0⤋
原式=-3[-2x/(x^2+1)]=-3[-1+1-2x/(x^2+1)]=3-3[1-2x/(x^2+1)]
=3-3[(x-1)^2/(x^2+1)]小於等於3(當x=1時),因此有最大值3
2007-10-11 06:58:55 · answer #3 · answered by GONG 6 · 0⤊ 0⤋
令6x/x^2+1=t
1/t= (x^2+1)/ 6x=(x/6)+(1/6x)
算幾不等式 [(x/6)+(1/6x)]2≧√[(x/6)*(1/6x)]=1/6
1/t=1/3
∵1/t的最小值為t的最大值
∴t=3
2007-10-10 18:25:12 · answer #4 · answered by Anonymous · 0⤊ 0⤋