已知tanA = 1/2 及 tanB = 1/5,其中A和B均為銳角。不得計算A和B的值,試求sin(A+B)的值。
2007-03-24 16:26:49 · 2 個解答 · 發問者 Thomas Ho 3 in 科學 ➔ 數學
已知tanA = 1/2 及 tanB = 1/5,其中A和B均為銳角。不得計算A和B的值,試求sin(A+B)的值。
tanA = 1/2
sinA = 1/[(5)^1/2]
cosA = 2/[(5)^1/2]
tanB = 1/5
sinB = 1/[(26)^1/2]
cosB = 5/[(26)^1/2]
sin(A + B)
= sinAcosB + sinBcosA
= {1/[(5)^1/2]}.{2/[(5)^1/2]} + {1/[(26)^1/2]}.{5/[(26)^1/2]}
= (2/5) + (5/26)
= 77/130
2007-03-24 16:49:16 · answer #1 · answered by Anonymous · 0⤊ 0⤋
tanA=1/2
tanB=1/5
tan(A+B)=(tanA+tanB)/(1-tanAtanB)
=(1/2+1/5)/(1-1/2 1/5)
=(7/10)/(9/10)
=7/9
sin(A+B)=tan(A+B)/sqrt(1+tan(A+B)^2)
=(7/9)/sqrt(1+(7/9)^2)
=7/sqrt(130)
2007-03-24 16:55:51 · answer #2 · answered by p 6 · 0⤊ 0⤋