find the points on the curve of intersection of the two surfacesx^2 y^2=1 and x^2-xy y^2-z^2=1which are nearest to the origin
我的作法是用f=x^2 y^2 z^2,g1=x^2 y^2-1,g2=x^2-xy y^2-z^2-1
然後▽f=a▽g1 b▽gx
找到(1/根號2 , -1/根號2 , 1/根號2)但是後來發現(1,0,0)帶進去會更小
請問這題要怎麼做謝謝
2007-03-08 11:09:14 · 3 個解答 · 發問者 ... 5 in 科學 ➔ 數學
▽f=a▽g1 b▽g2這裡打錯了
2007-03-08 11:09:46 · update #1
我會這樣做
x2+ y2=1 ...(1)
x2 - xy+y2 - z2=1 => z2 = -xy ... (2)
設交點 (t, √(1 - t2), √[- t√(1 - t2)]), 0 <= t <= 1
與原點距離 => √[t2 + (1 - t2) + t√(1 - t2)]
找 f(t) = 1 + t√(1 - t2)] 最短距離
f'(t) = √(1 - t2) - t2/√(1 - t2)
f'(t) = 0 => t = 1/√2
f(t) = 3/2
f(0) = 1, f(1) = 1 (0, 1 是端點)
=> (0, 1, 0) 是最接進近的點
又 x, y 有平方 且互為對稱
所以 (0, -1, 0), (1, 0, 0), (-1, 0, 0) 皆為所求
如果有問題, 請來函討論. 不然, 我可能會錯失你再補充的疑點.
2007-03-08 22:23:35 · answer #1 · answered by JJ 7 · 0⤊ 0⤋
ㄏㄏ 真會猜
ㄏㄏ 真夠閒
ㄏㄏ 真JJ
2011-12-08 14:08:55 · answer #2 · answered by XX 1 · 0⤊ 0⤋
等一下我有時間再幫你
2007-03-08 12:50:23 · answer #3 · answered by ? 7 · 0⤊ 0⤋