用數學歸納法證明:
(1-x)(1 2x 3x^2 ... nx^n-1)=1 x x^2 ...-nx^n
求22 32^2 ... (n 1)2^n之值?
A:n2^n 1
2007-02-24 22:40:31 · 2 個解答 · 發問者 Anonymous in 科學 ➔ 數學
when n=1
(1-x)(1)=1-x = 1- 1*x^1=F(1) 該敘述成立
when n=k
F(k)=(1-x)(1+2x+3x^2+...+kx^k-1)=1+x+x^2+...-kx^k
when n=k+1
(1-x)(1+2x+3x^2+...+(k+1)x^k)
=(1-x)(1+2x+3x^2+...+kx^k-1)+(1-x)(k+1)x^k
=1+x+x^2+...-kx^k +(k+1)x^k-(k+1)x^(k+1)
=1+x+x^2+...+x^k-(k+1)x^(k+1)=F(k+1)
得證
(以上證明當n=k成立時,n=k+1必成立;而n=1時也確實成立,所以n=2必成立,同理n=3, n=4, n=5,...也都會成立)
assume k=2*2+3*2^2+...+(n+1)2^n
then 2k=2*2^2+3*2^3+...+(n+1)2^(n+1)
-k=k-2k=2*2+2^2+2^3+2^4+....+2^n-(n+1)2^(n+1)
=2+(2^1+2^2+2^3+...+2^n)-(n+1)2^(n+1)
=2+( 2^(n+1) - 2)-(n+1)2^(n+1)
=-n2^(n+1)
because -k=-n2^(n+1)
then k= n2^(n+1)
2007-02-25 19:38:12 · answer #1 · answered by 山本惡司 4 · 0⤊ 0⤋
你的題目不清楚
可不可以請你重新打一次
2007-02-26 14:22:40 · answer #2 · answered by ? 4 · 0⤊ 0⤋